( 您好!臺灣時間:2021/05/10 10:23
字體大小: 字級放大   字級縮小   預設字形  


論文名稱(外文):Utilizing Fe3O4 Nanoparticles to DecomposePBDD/Fs and PBDEs in the Wastewater Effluents from Electronic Industry
指導教授(外文):Ta-Chang Lin
外文關鍵詞:PBDEsPBDD/FsFe3O4 nanoparticleselectronic industrywastewater.
  • 被引用被引用:2
  • 點閱點閱:218
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究自行合成四氧化三鐵奈米顆粒並進行降解電子產業廢水中多溴聯苯醚(PBDEs)及溴化戴奧辛(PBDD/Fs)毒性之評估。藉由SEM、ESEM-EDS、TEM與XRD特性分析可證明所合成的為奈米級Fe3O4其粒徑約在20 nm,顆粒呈圓球狀且因本身磁性而發生團聚現象。Fe3O4其比表面積平均值為73.86 m2/g,孔隙體積則為0.25 ml/g。使用奈米級Fe3O4降解電子產業廢水中PBDEs及PBDD/Fs濃度,隨著使用劑量濃度增加(~12.5 g/L),其去除率亦逐漸上升,24 hr後去除率分別為88.0 %及89.6 %。將二者反應狀況其線性化後所得反應速率常數kobs最高各達0.074 hr-1及0.083 hr-1,半衰期各為2.4 hr及1.0 hr。劑量濃度增加也促使其反應速率常數逐漸上升,而比表面積反應速率常數kSA下降。此外,若PBDD/Fs以毒性當量濃度計算,其使用較低之Fe3O4劑量濃度(2.5 g/L與5.0 g/L)無法使毒量當量濃度降低。但若使用較高之劑量(12.5g/L),則較能確保毒性當量濃度能與質量濃度一致,隨時間有下降之趨勢,其反應速率常數Kobs為0.069 hr-1。在奈米級Fe3O4回收試驗結果中,汙泥模擬組與清水對照組經兩次回收質量回收率平均值可提高至94.7 %與99.7%,奈米級Fe3O4顆粒可經由外加磁場固液分離,大幅提高實廠應用之可行性。
This study utilized Fe3O4 nanoparticles to degrade polybrominated dibenzo-p-dioxins/dibenzofurans(PBDD/Fs) and polybrominated diphenyl ethers(PBDEs) in the effluents from electronic industry. The SEM, ESEM-EDS,TEM and XRD analysis showed that the synthesized Fe3O4 nanoparticles are spherical with particle size about 20 nm, however, are aggregated due to its magnetic characteristics. In addition, the mean specific surface area of the Fe3O4 nanoparticles is 73.86 m2/g, and the corresponding pore volume is 0.25 ml/g. The removal efficiencies of PBDEs and PBDD/Fs in the effluent from wastewater treatment plants by Fe3O4 nanoparticles gradually increased with the increase of the dose concentration (~12.5 g/L), and reached 88.0 % and 89.6 %, respectively, after 24 hr.
In this study, pseudo-first-order kinetics are used to describe the degradation of PBDEs and PBDD/Fs in the effluents from wastewater treatment plants by Fe3O4 nanoparticles. The pseudo-first-order rate constant (Kobs) for PBDEs and PBDD/Fs gradually increased with the increase of the dose concentration (~12.5 g/L), and reached 0.074 hr-1 and 0.083 hr-1, respectively, while the corresponding surface-area-normalized rate coefficient (kSA) decreased with the increase of the dose concentration. For PBDD/Fs, the TEQ concentration in the effluent could raise, if the dose concentration of Fe3O4 nanoparticles was lower (2.5 g/L and 5.0 g/L). However, a higher dose concentration (12.5 g/L) still ensured the decline of both the PBDD/F mass and TEQ concentration. Its Kobs was 0.069 hr-1, and the half-life was 6.2 hr.
Recovery tests of Fe3O4 nanoparticles aim to evaluate the recovery rate of Fe3O4 nanoparticles by applying an external magnetic field in effluent wastewater sample. The result showed that the mean Fe3O4 nanoparticles recovery rates in effluent wastewater sample and control sample (the deion water) could reach 94.6% and 99.7%, respectively, revealing the feasibility of Fe3O4 nanoparticles on treating wastewater from electronic industry.

摘要 I
Abstract II
誌謝 IV
Contents 1
List of tables 3
List of figures 4
Chapter 1 Introduction 6
Chapter 2 Literature Review 8
2.1 Introduction of PBDEs and PBDD/Fs 8
2.1-1 Physical and chemical properties of PBDEs 8
2.1-2 Potential formation for PBDD/PBDF 12
2.1-3 Life cycle of PBDEs 14
2.1-4 Demand and usage 16
2.1-5 Toxicity in environment 17
2.1-6 Industrial pollution 18
2.2 Introduction of Fe3O4 19
2.3 Synthesis of Fe3O4 22
2.4 Application of Fe3O4 in environment assignment 24
2.5 Fe3O4 kinetic mechanism 26
Chapter 3 Experiment methods 29
3.1 Objectives and study framework 29
3.2 Materials 31
3.3 Preparation of Magnetic Nanomaterials 32
3.4 Characterization of Fe3O4 33
3.4-1 Morphology 33
3.4-2 XRD 35
3.4-3 BET (Brunauer-Emmett-Teuller) surface area 37
3.5 Recovery test 38
3.6 Batch experiments for debromination of PBDD/Fs and PBDEs 40
3.7 Kinetic analysis 41
3.8 Analyses of PBDEs and PBDD/Fs 43
Chapter 4 Results and discussion 45
4.1 The characteristics of Fe3O4 Nanoparticle 45
4.1-1The morphologic analysis 45
4.1-2 ESEM-EDS analysis 48
4.1-3 X-Ray Diffraction (XRD) 50
4.1-4 BET 52
4.2 Recovery efficiency of Fe3O4 nanoparticles with the external magnetic field 53
4.3 Degradation of PBDD/Fs and PBDEs in the effluents from wastewater treatment plants of electronic industry by using Fe3O4 nanoparticles 54
4.3-1 Degradation of PBDE concentration 54
4.3-2 Degradation of PBDD/F concentration 58
4.4 Kinetic analysis of the degradation of PBDD/Fs and PBDEs in the effluents from wastewater treatments of electronic industry by Fe3O4 nanoparticle 66
4.4-1 PBDEs Kinetic analysis 67
4.4-2 PBDD/Fs Kinetic analysis 70
4.4-3 PBDD/F TEQ kinetic analysis 73
Chapter 5 Conclusions and Suggestions 76
References 78

Alaee, M., P. Arias, et al. (2003). An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment International 29(6): 683-689.
Alcock, R. E., A. J. Sweetman, et al. (2003). Understanding levels and trends of BDE-47 in the UK and North America: an assessment of principal reservoirs and source inputs. Environment International 29(6): 691-698.
ATSDR (2004). Agency for Toxic Substances and Disease Registry.
BSEF (2003). An Introduction to Bromine Brussels:Bromine Science and Environmental Forum. Bromine Science and Environmental Fourm.
BSEF (2003). An Introduction to Bromine Brussels:Bromine Science and Environmental Forum.
Chao, H. R., S. L. Wang, et al. (2007). Levels of polybrominated diphenyl ethers (PBDEs) in breast milk from central Taiwan and their relation to infant birth outcome and maternal menstruation effects. Environment International 33(2): 239-245.
Chen, D., B. Mai, et al. (2007). Polybrominated diphenyl ethers in birds of prey from northern China. Environ. Sci. Technol. 41(6): 1828-1833.
Chen, D. H. and S. H. Huang (2004). Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles. Process Biochemistry 39(12): 2207-2211.
Darnerud, P. O., G. S. Eriksen, et al. (2001). Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives 109(Suppl 1): 49.
Eldridge, D. (2006 ). Sweden fans flames with retardant ban Plastics and Rubber Weekly: 1-1.
EPA, U. S. (2004). oxicological Profile for Polybrominated Biphenyls and Polybrominated Diphenyl Ethers. (Environmental Protection Agency Washington, DC).
European Court of Justice (2008). Judgement of the European Court of Justice on Joint Cases C-14/06 and C-295/06
Fang, G., Y. Si, et al. (2012). Degradation of 2, 4-D in soils by Fe 3 O 4 nanoparticles combined with stimulating indigenous microbes. Environmental Science and Pollution Research 19(3): 784-793.
Feng, D., C. Aldrich, et al. (2000). Removal of heavy metal ions by carrier magnetic separation of adsorptive particulates. Hydrometallurgy 56(3): 359-368.
Gebbink, W. A., C. Sonne, et al. (2008). Target tissue selectivity and burdens of diverse classes of brominated and chlorinated contaminants in polar bears (Ursus maritimus) from east Greenland. Environ. Sci. Technol. 42(3): 752-759.
Hale, R. C., M. J. La Guardia, et al. (2002). Potential role of fire retardant-treated polyurethane foam as a source of brominated diphenyl ethers to the US environment. Chemosphere 46(5): 729-735.
He, F., D. Zhao, et al. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & engineering chemistry research 46(1): 29-34.
Jones, F. (1938). The measurement of particle size by the X-ray method. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 166(924): 16-43.
Kelly, B. C., M. G. Ikonomou, et al. (2007). Food web-specific biomagnification of persistent organic pollutants. Science 317(5835): 236-239.
Kim, Y. J., M. Osako, et al. (2006). Leaching characteristics of polybrominated diphenyl ethers (PBDEs) from flame-retardant plastics. Chemosphere 65(3): 506-513.
Kunisue, T., N. Takayanagi, et al. (2007). Polybrominated diphenyl ethers and persistent organochlorines in Japanese human adipose tissues. Environ. Int. 33(8): 1048-1056.
La Guardia, M. J., R. C. Hale, et al. (2006). Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental Science & Technology 40(20): 6247-6254.
Li, A., C. Tai, et al. (2007). Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environmental science & technology 41(19): 6841-6846.
Lien, H. L. and W. Zhang (1999). Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering 125(11): 1042-1047.
Lien, H. L. and W. Zhang (2001). Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 191(1-2): 97-105.
Litz, J. A., L. P. Garrison, et al. (2007). Fine-scale spatial variation of persistent organic pollutants in bottlenose dolphins (Tursiops truncatus) in Biscayne bay, Florida. Environ. Sci. Technol. 41(21): 7222-7228.
Liu, Z., H. Wang, et al. (2004). Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles. Journal of magnetism and magnetic materials 283(2): 258-262.
Luijk, R., C. Dorland, et al. (1994). The role of bromine in the( i) de novo(/i) synthesis in a model fly ash system. Chemosphere 28(7): 1299-1309.
McDonald, T. A. (2002). A perspective on the potential health risks of PBDEs. Chemosphere 46(5): 745-755.
Mehta, R., R. Upadhyay, et al. (1997). Direct binding of protein to magnetic particles. Biotechnology Techniques 11(7): 493-496.
Melitas, N., O. Chuffe-Moscoso, et al. (2001). Kinetics of soluble chromium removal from contaminated water by zerovalent iron media: corrosion inhibition and passive oxide effects. Environmental science & technology 35(19): 3948-3953.
Melitas, N. and J. Farrell (2002). Understanding chromate reaction kinetics with corroding iron media using Tafel analysis and electrochemical impedance spectroscopy. Environmental science & technology 36(24): 5476-5482.
Norén, K. and D. Meironyté (2000). Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20-30 years. Chemosphere 40(9-11): 1111-1123.
Päpke, O. (1998). PCDD/PCDF: human background data for Germany, a 10-year experience. Environmental Health Perspectives 106(Suppl 2): 723.
Peng, L., P. Qin, et al. (2012). Modifying Fe3O4 nanoparticles with humic acid for removal of Rhodamine B in water. Journal of Hazardous Materials 209–210(0): 193-198.
Prevedouros, K., K. C. Jones, et al. (2004). Estimation of the production, consumption, and atmospheric emissions of pentabrominated diphenyl ether in Europe between 1970 and 2000. Environ. Sci. Technol. 38(12): 3224-3231.
Renner, R. (2004). InUS, flame retardants will be voluntarily phased out. Environmental Science & Technology 38(1): 14a-14a.
Sakai, S., J. Watanabe, et al. (2001). Combustion of brominated flame retardants and behavior of its byproducts. Chemosphere 42(5-7): 519-531.
Sakai, Y., T. Miama, et al. (1997). Simultaneous removal of organic and nitrogen compounds in intermittently aerated activated sludge process using magnetic separation. Water Research 31(8): 2113-2116.
Si, Y. B., G. D. Fang, et al. (2010). Reductive transformation of 2, 4-dichlorophenoxyacetic acid by nanoscale and microscale Fe3O4 particles. Journal of Environmental Science and Health Part B 45(3): 233-241.
Tan, Y., M. Chen, et al. (2012). High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles. Chemical Engineering Journal 191(0): 104-111.
Thapa, D., V. Palkar, et al. (2004). Properties of magnetite nanoparticles synthesized through a novel chemical route. materials letters 58(21): 2692-2694.
Thomsen, C., L. Småstuen Haug, et al. (2002). Comparing electron ionization high-resolution and electron capture low-resolution mass spectrometric determination of polybrominated diphenyl ethers in plasma, serum and milk. Chemosphere 46(5): 641-648.
Tie, S. L., H. C. Lee, et al. (2007). Monodisperse Fe3O4/Fe@SiO2 Core/Shell Nanoparticles with Enhanced Magnetic Property. Colloids and Surfaces A: Physicochemical and Engineering Aspects 293(1): 278-285.
Tittlemier, S. A., T. Halldorson, et al. (2002). Vapor pressures, aqueous solubilities, and Henry's law constants of some brominated flame retardants. Environmental toxicology and chemistry 21(9): 1804-1810.
Tittlemier, S. A. and G. T. Tomy (2001). Vapor pressures of six brominated diphenyl ether congeners. Environmental toxicology and chemistry 20(1): 146-148.
Toshima, N. and T. Yonezawa (1998). Bimetallic nanoparticles—novel materials for chemical and physical applications. New J. Chem. 22(11): 1179-1201.
U.S. EPA (2009). Contaminants –Polybrominated Diphenyl Ethers (PBDEs) and Polybrominated Biphenyls (PBBs).
Uheida, A., G. Salazar-Alvarez, et al. (2006). Fe3O4 and γ-Fe2O3 Nanoparticles for the Adsorption of Co2+ from
Aqueous Solution. Journal of colloid and interface science 298(2): 501-507.
V. Srivastava, P. K. S., C.H. Weng, Y.C. Sharma (2011). Economically viable synthesis of Fe3O4 nanoparticles and their characterization, Polish Journal of Chemical Technology.
Voorspoels, S., A. Covaci, et al. (2007). Dietary PBDE intake: A market-basket study in Belgium. Environment International 33(1): 93-97.
Wang, C. B. and W. X. Zhang (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental science & technology 31(7): 2154-2156.
Wang, L. C., H. C. Hsi, et al. (2010). Distribution of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) in municipal solid waste incinerators. Environmental Pollution 158(5): 1595-1602.
Wang, L. C., Y. F. Wang, et al. (2010). Characterizing the emissions of polybrominated diphenyl ethers (PBDEs) and polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from metallurgical processes. Environ. Sci. Technol. 44(4): 1240-1246.
Watanabe, I. and S. Sakai (2003). Environmental release and behavior of brominated flame retardants. Environment International 29(6): 665-682.
Weber, R. and B. Kuch (2003). Relevance of BFRs and thermal conditions on the formation pathways of brominated and brominated–chlorinated dibenzodioxins and dibenzofurans. Environment International 29(6): 699-710.
World Health Organization (1998). Polybrominated dibenzo-p-dioxins and dibenzofurans, Environmental Health Criteria 205. Geneva, Switzerland.
Wright, H. E., Q. Zhang, et al. (2008). Integrating economic input-output life cycle assessment with risk assessment for a screening-level analysis. International Journal of Life Cycle Assessment 13(5): 412-420.
Xiaohu, G. e. a. (2009). Nanomed Nanobiotechnol 1, 583–609.
Yang, L. (1995). Review of marine outfall systems in Taiwan. SEL. PROC. OF 2. IAWQ INT. SYMP. ON MARINE DISPOSAL SYSTEMS.
Zhang, W., C. B. Wang, et al. (1998). Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis today 40(4): 387-395.
周志明 (2009). 奈米樹狀高分子複合磁性金屬吸附重金屬之研究. 國立高雄大學土木與環境工程學系碩士論文.
陳孟宜 (2009). 奈米零價鐵鈀還原降解五氯酚之研究.
陳珮紋 (2004). 利用 Fe3O4 磁性顆粒處理化學機械研磨廢水 .
彭子峻 (2008). 奈米級 [Fe3O4] MgO 於地下水環境中與三氯乙烯之反應行為探討.
葉佳玲 (2008). 磁性奈米鐵吸附水中酸性染料之特性研究.
劉伊郎、陳恭 (2000). 氧化鐵 (Fe3O4) 薄膜與超晶格. 國立中正大學物理雙月刊 26卷6期 592-605.
鄭景軒 (2003). 磁性奈米微粒之二氧化矽被覆技術之研究.
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔