(3.238.96.184) 您好!臺灣時間:2021/05/08 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳怡儒
研究生(外文):Yi JuWu
論文名稱:鹽度對活性汙泥中氨氧化菌及氨氧化古細菌族群之影響
論文名稱(外文):Salinity Effect on Ammonia-Oxidizing Bacteria and ArchaeaCommunities in Activated Sludge
指導教授:黃良銘黃良銘引用關係
指導教授(外文):Liang-Ming Whang
學位類別:博士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:132
中文關鍵詞:氨氧化菌氨氧化古細菌時間延遲主座標分析定量聚合脢 鏈鎖反應
外文關鍵詞:ammonia-oxidizing bacteriaammonia-oxidizing archaeatime lag effectprincipal coordinates analysisreal-time quantitative polymerase chain reaction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:269
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一直以來氨氧化菌被認為是活性汙泥系統中主要負責硝化作用的微
生物,直到發現氨氧化古細菌,學者們開始探討氨氧化古細菌在硝化系
統中所扮演的角色以及其與氨氧化菌之間的關係。利用主座標分析研究
不同國家活性汙泥系統中氨氧化菌及氨氧化古細菌的族群結構發現,地
理位置並未影響或限制氨氧化微生物的分佈。
為了解氨氧化菌及氨氧化古細菌在活性汙泥系統中的關係,本研究
監測一都市汙水處理廠四年之久,發現汙水中的鹽度對氨氧化菌及氨氧
化古細菌的族群結構變化可能具有舉足輕重的影響力,此外鹽度可能也
會影響系統中氨氧化菌及氨氧化古細菌的相對比例。根據氨氧化功能性
基因amoA 序列進行之親緣分析發現,在高鹽度環境中Nitrosomonas
marina 類氨氧化菌及Thaumarcheota I.1a(多發現自海洋)類氨氧化古細菌
為優勢,而鹽度較低時Nitrosomonas urea 類氨氧化菌及Thaumarcheota
I.1b(多發現自土壤)類氨氧化古細菌則佔多數;而氨氧化菌及氨氧化古細
菌的相對比例亦隨著鹽度降低而減少,顯示鹽度有利於氨氧化古細菌的
存在。此外本研究亦發現,氨氧化微生物族群的變化與環境的改變間有
時間延遲的現象,可能是由於氨氧化微生物為自營性微生物生長較慢,
需要一段時間反映環境對其造成的影響。
為驗證鹽度對氨氧化菌及氨氧化古細菌的影響,本研究進一步設置
兩個植種相同微生物來源的生物反應器,分別操作於0.25% 及3.5%鹽度
條件之下(其他操作條件相同),兩生物反應器中硝化效率均可達95%以上。
根據尾端限制片段長度多形性分析,於操作123 及273 天之後,兩個反
應器馴養出截然不同的氨氧化菌及氨氧化古細菌族群。定量聚合脢鏈鎖
反應分析結果則顯示,氨氧化古細菌在兩個生物反應器中大部分的時間
均較氨氧化菌優勢,而高鹽度生物反應器中氨氧化古細菌對氨氧化菌的
比例更高,證明即使些微的鹽度亦對氨氧化古細菌較有利。因為鹽度差
異馴養出不同的氨氧化菌及氨氧化古細菌族群,以及不同氨氧化菌及氨
氧化古細菌間的比例,亦導致其硝化動力表現上的差異,高鹽度馴養出
的氨氧化微生物於相同氨氮濃度下,其氨氧化速率較低鹽度馴養出的氨
氧化微生物為低。
本研究證實鹽度不僅影響活性汙泥中氨氧化菌及氨氧化古細菌族群
種類,亦會影響氨氧化菌及氨氧化古細菌間的比例,並間接造成氨氧化
速率的表現。此外,利用統計分析微生物族群結構變化發現,氨氧化菌
及氨氧化古細菌因應相同的環境變化產生的族群結構改變程度亦不同。
Ammonia-oxidizing bacteria (AOB) are the main contributor in the first step of nitrification in activated sludge systems. Recently, the widely distributed ammonia-oxidizing archaea (AOA) have been reported in natural environments with potential important role in nitrification, but little
information is available about AOA in activated sludge systems. Survey of AOA/AOB community structures in activated sludge systems located at different countries revealed that AOA/AOB population didn’t restricted by geographical location.
A four-year monitoring of a municipal wastewater treatment plant showed that salinity may play an important role on AOA and AOB. Based on the real-time quantitative polymerase chain reaction (qPCR) of ammonia monooxygenase subunit A (amoA) genes, an increase in the AOB amoA gene copies occurred with a decrease in the wastewater salinity level. A
corresponding decrease in the average AOA/AOB ratio was observed. Phylogenetic analyses on amoA gene sequences indicated that Nitrosomonas marina-like AOB and “Thaumarcheota I.1a” (marina group) AOA were dominant when the wastewater salinity level fluctuated at high values with an average of 4.83 practical salinity unit (psu), while Nitrosomonas urea-like AOB and “Thaumarcheota I.1b” (soil group) AOA became dominant when the wastewater salinity decreased to a more stable lower level. Based on the
amoA-based terminal restriction fragment length polymorphism (T-RFLP)analyses, results from this study demonstrated that the observed shift in AOB and AOA populations is likely caused by a change of the wastewater salinity level. Moreover, time lag effect was proposed in this study for evaluating the relationship between environment factors and slow-growing microorganism (like AOA and AOB) population.
To clarify the impact of the salinity on AOA and AOB, bioreactors seeded with the same inoculums were operated under the same conditions but with different salinity level (0.25% and 3.5%) for more that 300 days. Both bioreactors were able to achieve over 95% of nitrification efficiency.
Distinct AOA and AOB populations were enriched after 123 days and 273 days operation based on results of T-RFLP and cloning and sequencing targeting on amoA gene. Real-time qPCR results targeting on amoA gene showed that AOA predominated in both reactors in most of the operation
period (AOA/AOB ratio over 1). Higher AOA/AOB ratio values were observed in high salinity reactor. Comparing these two reactors, it shows that salinity provide AOA advantage to outnumber over AOB. Batch test results showed that activated sludge enriched from different salinity performed different kinetics characteristics.
Our results clearly presented salinity affected ammonia-oxidizing archaea and bacteria on their abundance, community structure, and kinetics characteristics. Moreover, principal coordinates analysis result showed that AOA and AOB community change level, which resulted from the environment change, were different.
TABLE OF CONTENTS
摘要 II
ABSTRACT IV
致謝 VI
TABLE OF CONTENTS VIII
LIST OF TABLES XIII
LIST OF FIGURES XV
Chapter 1. Introduction 1
1.1 RESEARCH OBJECTIVE 4
1.2 DISSERTATION STRUCTURES 4
Chapter 2. LITERATURE REVIEW 5
2.1 NITROGEN REMOVAL PROCESS 5
2.1.1 Nitrification coupled with denitrification 6
2.1.2 Partial nitrification coupled with anaerobic ammonium oxidation (ANAMMOX) 8
2.2 AMMONIA OXIDIZING MICROORGANISM 8
2.2.1 Taxonomy of Ammonia-oxidizing bacteria (AOB) 9
2.2.2 Taxonomy of Ammonia-oxidizing archaea (AOA) 12
2.2.3 Physiology characteristic of ammonia-oxidizing microorganism 17
2.3 SALINITY EFFECT ON BIOLOGICAL REACTION 23
2.3.1 Nitrification activity 23
2.3.2 Microbial ecology 24
2.4 MOLECULAR METHODS APPLIED IN AMMONIA OXIDIZING MICROORGANISM 25
2.4.1 Biomarkers for Ammonia-oxidizers 25
2.4.2 Terminal restriction fragment length polymorphism (T-RFLP) 29
2.4.3 Real -time quantitative PCR 33
2.5 STATISTICAL MULTIVARIATE ANALYSIS 35
2.5.1 Principal coordinates analysis 36
2.5.2 Nonmetric multidimensional scaling 37
Chapter 3. PRELIMINARY STUDY ON AMMONIA-OXIDIZING MICROORGANISMS IN GLOBAL ACTIVATED SLUDGE BIOREACTORS 40
3.1 ABSTRACT 40
3.2 INTRODUCTION 40
3.3 MATERIAL AND METHODS 42
3.3.1 Global activated sludge systems 42
3.3.2 Principal coordinates analysis 48
3.4 RESULTS 48
3.4.1 Detection of ammonia-oxidizing bacteria 48
3.4.2 Detection of ammonia-oxidizing archaea 49
3.4.3 Population of AOB in activated sludge systems 49
3.4.4 Population of AOA in activated sludge systems 50
3.5 SUMMARY 53
Chapter 4. AMMONIA-OXIDIZING BACTERIA AND ARCHAEA IN A FUll Scale MUNICIPAL WASTEWATER TREATMENT PLANT 54
4.1 ABSTRACT 54
4.2 INTRODUCTION 55
4.3 MATERIALS AND METHODS 55
4.3.1 AP WWTP, operational conditions, and bioreactor performance 55
4.3.2 DNA extraction, PCR amplification, and T-RFLP analysis. 57
4.3.3 Cloning/sequencing and phylogenetic analysis. 58
4.3.4 Real-time PCR of amoA genes. 59
4.3.5 Correlation coefficient analyses. 60
4.4 RESULTS 60
4.4.1 Quantification of ammonia-oxidizing microorganisms. 60
4.4.2 Bacterial amoA-based community structure. 62
4.4.3 Archaeal amoA-based community structure 63
4.4.4 T-RFLP analysis of AOB and AOA populations 70
4.4.5 Correlations between operational data and AOA/AOB abundance 75
4.5 DISCUSSION 79
4.5.1 Shifts in the relative abundance of AOA and AOB populations during the changes of wastewater salinity level 79
4.5.2 Responses of AOB and AOA populations to the wastewater salinity change 83
4.6 SUMMARY 87
Chapter 5. AMMONIA-OXIDIZING BACTERIA AND ARCHAEA IN BIOREACTORS WITH DIFFERENT SALINITY 89
5.1 ABSTRACT 89
5.2 INTRODUCTION 90
5.3 MATERIALS AND METHODS 91
5.3.1 Bioreactor operation and nitrogen species measurement 91
5.3.2 DNA extraction, PCR, T-RFLP 92
5.3.3 Cloning and sequencing 93
5.3.4 Phylogenetic analysis and statistical analysis. 94
5.3.5 Real-time PCR assay. 94
5.3.6 Batch test 95
5.4 RESULTS 96
5.4.1 Bioreactor performance 96
5.4.2 Ammonia oxidizing bacteria and archaea population dynamic analyzed by T-RFLP 98
5.4.3 Bacterial amoA-based community structure 100
5.4.4 Archaeal amoA-based community structure 100
5.4.5 Abundance of archaeal and bacteria amoA gene 105
5.4.6 Ammonia oxidation kinetics 107
5.5 DISCUSSION 108
5.5.1 Salinity effect on AOA and AOB community structure 108
5.5.2 AOA and AOB response differently to environment change 109
5.5.3 Salinity effect on AOA and AOB abundance 113
5.5.4 Salinity effect on ammonia oxidation kinetics 114
5.6 SUMMARY 115
Chapter 6. Conclusion and Recommendation 116
6.1 CONCLUSION 116
6.2 SIGNIFICANCE OF THE FINDINGS 117
6.3 RECOMMENDATION FOR FUTURE RESEARCH 117
REFERENCES 119
Aakra, Å., J. B. Utåker and I. F. Nes (1999). RFLP of rRNA genes and sequencing of the 16S-23S rDNA intergenic spacer region of ammonia-oxidizing bacteria: a phylogenetic approach. International Journal of Systematic Bacteriology 49(1): 123-130.
Alzerreca, J. J., J. M. Norton and M. G. Klotz (1999). The amo operon in marine, ammonia-oxidizing γ-proteobacteria. FEMS microbiology letters 180(1): 21-29.
Anthonisen, A. C., R. C. Loehr, T. B. S. Prakasam and E. G. Srinath (1976). Inhibition of Nitrification by Ammonia and Nitrous Acid. Journal (Water Pollution Control Federation) 48(5): 835-852.
APHA, AWWA and WEF (1995). Standard methods for the examination of water and wastewater. Washington, DC, American Public Health Association.
Bae, H., J. H. Park, K. S. Jun and J. Y. Jung (2011). The community analysis of ammonia-oxidizing bacteria in wastewater treatment plants revealed by the combination of double labeled T-RFLP and sequencing. Journal of Environmental Science and Health Part A 46(4): 345-354.
Baek, J.-G., J. Park, T.-S. Kim and H.-D. Park (2011). Analysis of the time dependency of ammonia-oxidizing bacterial community dynamics in an activated sludge bioreactor. Journal of Bioscience and Bioengineering 112(2): 166-169.
Bai, Y., Q. Sun, D. Wen and X. Tang (2012). Abundance of ammonia-oxidizing bacteria and archaea in industrial and domestic wastewater treatment systems. FEMS Microbiology Ecology 80(2): 323-330.
Beman, J. M. and C. A. Francis (2006). Diversity of ammonia-oxidizing archaea and bacteria in the sediments of a hypernutrified subtropical estuary: Bahı´a del To´bari, Mexico. Applied and Environmental Microbiology 72(12): 7767-7777.
Bernhard, A. E. and A. Bollmann (2010). Estuarine nitrifiers: New players, patterns and processes. Estuarine, Coastal and Shelf Science 88(1): 1-11
Bernhard, A. E., T. Donn, A. E. Giblin and D. A. Stahl (2005). Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system. Environmental Microbiology 7(9): 1289-1297.
Bernhard, A. E. and K. G. Field (2000). Identification of nonpoint sources of fecal pollution in coastal waters by using host-specific 16S ribosomal DNA genetic markers from fecal anaerobes. Applied and Environmental Microbiology 66(4): 1587-1594.
Blackwood, C. B., T. Marsh, S.-H. Kim and E. A. Paul (2003). Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Applied and Environmental Microbiology 69(2): 926-932.
Blainey, P. C., A. C. Mosier, A. Potanina, C. A. Francis and S. R. Quake (2011). Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis. PLoS ONE 6(2): e16626.
Bollmann, A. and H. J. Laanbroek (2002). Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary. Aquatic Microbial Ecology 28: 239–247.
Brochier-Armanet, C., B. Boussau, S. Gribaldo and P. Forterre (2008). Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Micro 6(3): 245-252.
Burrell, P. C., C. M. Phalen and T. A. Hovanec (2001). Identification of bacteria responsible for ammonia oxidation in freshwater aquaria. Applied and Environmental Microbiology 67(12): 5791-5800.
Caffrey, J. M., N. Bano, K. Kalanetra and J. T. Hollibaugh (2007). Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. The ISME Journal 1(7): 660-662.
Campbell, M. A., P. S. G. Chain, H. Dang, A. F. El Sheikh, J. M. Norton, N. L. Ward, B. B. Ward and M. G. Klotz (2011). Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world's oceans: calls to validate the names ‘Nitrosococcus halophilus’ and ‘Nitrosomonas mobilis’. FEMS Microbiology Ecology 76(1): 39-48.
Casamayor, E. O., R. Massana, S. Benlloch, L. Øvreås, B. Díez, V. J. Goddard, J. M. Gasol, I. Joint, F. Rodríguez-Valera and C. Pedrós-Alió (2002). Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environmental Microbiology 4(6): 338-348.
Dang, H., X. Zhang, J. Sun, T. Li, Z. Zhang and G. Yang (2008). Diversity and spatial distribution of sediment ammonia-oxidizing crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 154(7): 2084-2095.
de Bie, M. J. M., A. G. C. L. Speksnijder, G. A. Kowalchuk, T. Schuurman, G. Zwart, J. R. Stephen, O. E. Diekmann and H. J. Laanbroek (2001). Shifts in the dominant populations of ammoniaoxidizing β-subclass Proteobacteria along the eutrophic Schelde estuary. Aquatic Microbial Ecology 23: 225-236.
De Corte, D., T. Yokokawa, M. M. Varela, H. Agogue and G. J. Herndl (2008). Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. ISME J 3(2): 147-158.
de la Torre, J. R., C. B. Walker, A. E. Ingalls, M. Koneke and D. A. Stahl (2008). Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology 10(3): 810-818.
Erguder, T. H., N. Boon, L. Wittebolle, M. Marzorati and W. Verstraete (2009). Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiology Reviews 33(5): 855-869.
Fierer, N. and R. B. Jackson (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America 103(3): 626-631.
Francis, C. A., G. D. O’Mullan and B. B. Ward (2003). Diversity of ammonia monooxygenase (amoA) genes across environmental gradients in Chesapeake Bay sediments. Geobiology 1(2): 129-140.
Francis, C. A., K. J. Roberts, J. M. Beman, A. E. Santoro and B. B. Oakley (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proceedings of the National Academy of Sciences of the United States of America 102(41): 14683-14688.
Fukushima, T., L.-M. Whang, T.-Y. Chiang, Y.-H. Lin, L. Chevalier, M.-C. Chen and Y.-J. Wu (2012). Nitrifying bacterial community structures and their nitrification performance under sufficient and limited inorganic carbon conditions. Applied Microbiology and Biotechnology: 1-11.
Galí, A., J. Dosta, M. C. M. van Loosdrecht and J. Mata-Alvarez (2007). Two ways to achieve an anammox influent from real reject water treatment at lab-scale: Partial SBR nitrification and SHARON process. Process Biochemistry 42(4): 715-720.
Ginzinger, D. G. (2002). Gene quantification using real-time quantitative PCR: An emerging technology hits the mainstream. Experimental hematology 30(6): 503-512.
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3-4): 325-338.
Hallam, S. J., K. T. Konstantinidis, N. Putnam, C. Schleper, Y.-i. Watanabe, J. Sugahara, C. Preston, J. de la Torre, P. M. Richardson and E. F. DeLong (2006). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proceedings of the National Academy of Sciences 103(48): 18296-18301.
Harms, G., A. C. Layton, H. M. Dionisi, I. R. Gregory, V. M. Garrett, S. A. Hawkins, K. G. Robinson and G. S. Sayler (2003). Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environmental Science & Technology 37(2): 343-351.
Hatzenpichler, R., E. V. Lebedeva, E. Spieck, K. Stoecker, A. Richter, H. Daims and M. Wagner (2008). A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring. Proceedings of the National Academy of Sciences of the United States of America 105(6): 2134-2139.
He, J.-z., J.-p. Shen, L.-m. Zhang, Y.-g. Zhu, Y.-m. Zheng, M.-g. Xu and H. Di (2007). Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. Environmental Microbiology 9(9): 2364-2374.
Head, I. M., W. D. Hiorns, T. M. Embley, A. J. McCarthy and J. R. Saunders (1993). The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. Journal of general microbiology 139(6): 1147-1153.
Hermansson, A. and P.-E. Lindgren (2001). Quantification of ammonia-oxidizing bacteria in arable soil by real-time PCR. Applied and Environmental Microbiology 67(2): 972-976.
Hiibel, S. R., L. P. Pereyra, L. Y. Inman, A. Tischer, D. J. Reisman, K. F. Reardon and A. Pruden (2008). Microbial community analysis of two field-scale sulfate-reducing bioreactors treating mine drainage. Environmental Microbiology 10(8): 2087-2097.
Holmes, R. T., R. E. Bonney, Jr. and S. W. Pacala (1979). Guild structure of the hubbard brook bird community: A multivariate approach. Ecology 60(3): 512-520.
Horz, H.-P., J.-H. Rotthauwe, T. Lukow and W. Liesack (2000). Identification of major subgroups of ammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products. Journal of Microbiological Methods 39(3): 197-204.
Jetten, M. S. M., M. Wagner, J. Fuerst, M. van Loosdrecht, G. Kuenen and M. Strous (2001). Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Current Opinion in Biotechnology 12(3): 283-288.
Jin, T., T. Zhang and Q. Yan (2010). Characterization and quantification of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in a nitrogen-removing reactor using T-RFLP and qPCR. Applied Microbiology and Biotechnology 87(3): 1167-1176.
Jr., W. F. H., A. Terada, F. Poly, X. L. Roux, K. Kristensen, M. Mazher and B. F. Smets (2009). The effect of hydroxylamine on the activity and aggregate structure of autotrophic nitrifying bioreactor cultures. Biotechnology and Bioengineering 102(3): 714-724.
Jung, M.-Y., S.-J. Park, D. Min, J.-S. Kim, W. I. C. Rijpstra, J. S. Sinninghe Damsté, G.-J. Kim, E. L. Madsen and S.-K. Rhee (2011). Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil. Applied and Environmental Microbiology 77(24): 8635-8647.
Junier, P., V. Molina, C. Dorador, O. Hadas, O.-S. Kim, T. Junier, K.-P. Witzel and J. Imhoff (2010). Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Applied Microbiology and Biotechnology 85(3): 425-440.
Juretschko, S., G. Timmermann, M. Schmid, K.-H. Schleifer, A. Pommerening-Roser, H.-P. Koops and M. Wagner (1998). Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and Environmental Microbiology 64(8): 3042-3051.
Kayee, P., P. Sonthiphand, C. Rongsayamanont and T. Limpiyakorn (2011). Archaeal amoA genes outnumber bacterial amoA genes in municipal wastewater treatment plants in Bangkok. Microbial Ecology 62(4): 776-788.
Kester, D. R., I. W. Duedall, D. N. Connors and R. M. Pytkowicz (1967). Preparation of artificial seawater. Limnology and Oceanography 12(1): 176-179.
Klotz, M. G. and J. M. Norton (1995). Sequence of an ammonia monooxygenase subunit A-encoding gene from Nitrosospira sp. NpAV. Gene 163(1): 159-160.
Klotz, M. G. and J. M. Norton (1998). Multiple copies of ammonia monooxygenase (amo) operons have evolved under biased AT/GC mutational pressure in ammonia-oxidizing autotrophic bacteria. FEMS Microbiology Letters 168(2): 303-311.
Knauth, S., T. Hurek, D. Brar and B. Reinhold-Hurek (2005). Influence of different Oryza cultivars on expression of nifH gene pools in roots of rice. Environmental Microbiology 7(11): 1725-1733.
Konneke, M., A. E. Bernhard, J. R. de la Torre, C. B. Walker, J. B. Waterbury and D. A. Stahl (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437: 543-546.
Koops, H.-P., B. Bottcher, U. C.Moller, A. Pommerening-Roser and G. Stwhr (1991). Classification of eight new species of ammonia-oxidizing bacteria: Nitrosomonas communis sp. nov., Nitrosomonas ureae sp. nov., Nitrosomonas aestuarii sp. nov., Nitrosomonas marina sp. nov., Nitrosomonas nitrosa sp. nov., Nitrosomonas eutropha sp. nov., Nitrosomonas oligotropha sp. nov. and Nitrosomonas halophila sp. nov. Journal of General Microbiology 137: 1689-1699.
Koops, H.-P. and A. Pommerening-Roser (2001). Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology Ecology 37(1): 1-9.
Koops, H.-P., U. Purkhold, A. Pommerening-Röser, G. Timmermann and M. Wagner (2006). The lithoautotrophic ammonia-oxidizing bacteria. The Prokaryotes. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer and E. Stackebrandt, Springer New York: 778-811.
Koops, H. P., B. Böttcher, U. C. Möller, A. Pommerening-Röser and G. Stehr (1990). Description of a new species of Nitrosococcus. Archives of Microbiology 154(3): 244-248.
Kowalchuk, G. A. and J. R. Stephen (2001). Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annual Review of Microbiology 55(1): 485-529.
Kowalchuk, G. A., J. R. Stephen, W. De Boer, J. I. Prosser, T. M. Embley and J. W. Woldendorp (1997). Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology 63(4): 1489-1497.
Lauber, C. L., M. Hamady, R. Knight and N. Fierer (2009). Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology 75(15): 5111-5120.
Layton, A. C., H. Dionisi, H. W. Kuo, K. G. Robinson, V. M. Garrett, A. Meyers and G. S. Sayler (2005). Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Applied and Environmental Microbiology 71(2): 1105-1108.
Lee, J. E., M. Y. Lim, S. Y. Kim, S. Lee, H. Lee, H.-M. Oh, H.-G. Hur and G. Ko (2009). Molecular characterization of bacteriophages for microbial source tracking in Korea. Applied and Environmental Microbiology 75(22): 7107-7114.
Lehtovirta-Morley, L. E., K. Stoecker, A. Vilcinskas, J. I. Prosser and G. W. Nicol (2011). Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proceedings of the National Academy of Sciences 108(38): 15892-15897.
Leininger, S., T. Urich, M. Schloter, L. Schwark, J. Qi, G. W. Nicol, J. I. Prosser, S. C. Schuster and C. Schleper (2006). Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(17): 806-809.
Lim, J., H. Do, S. G. Shin and S. Hwang (2008). Primer and probe sets for group-specific quantification of the genera Nitrosomonas and Nitrosospira using real-time PCR. Biotechnology and Bioengineering 99(6): 1374-1383.
Limpiyakorn, T., Y. Shinohara, F. Kurisu and O. Yagi (2005). Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiology Ecology 54(2): 205-217.
Limpiyakorn, T., P. Sonthiphand, C. Rongsayamanont and C. Polprasert (2011). Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresource Technology 102: 3694-3701.
Liu, W.-T. M., Terence L.; Cheng, Hans; Forney, Larry J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology 63(11): 4516-4522.
Lozupone, C. and R. Knight (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71(12): 8228-8235.
Lozupone, C. A., M. Hamady, S. T. Kelley and R. Knight (2007). Quantitative and qualitative  diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology 73(5): 1576-1585.
Lozupone, C. A. and R. Knight (2007). Global patterns in bacterial diversity. Proceedings of the National Academy of Sciences 104(27): 11436-11440.
Marsh, T. L., W.-T. Liu, L. J. Forney and H. Cheng (1998). Beginning a molecular analysis of the eukaryal community in activated sludge. Water Science and Technology 37(4–5): 455-460.
Marshall, S. and M. Elliott (1998). Environmental influences on the fish assemblage of the Humber Estuary, U.K. Estuarine, Coastal and Shelf Science 46(2): 175-184.
Martens-Habbena, W., P. M. Berube, H. Urakawa, J. R. de la Torre and D. A. Stahl (2009). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461(7266): 976-979.
McTavish, H., J. A. Fuchs and A. B. Hooper (1993). Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. Journal of Bacteriology 175(8): 2436-2444.
Moeseneder, M. M., C. Winter, J. M. Arrieta and G. J. Herndl (2001). Terminal-restriction fragment length polymorphism (T-RFLP) screening of a marine archaeal clone library to determine the different phylotypes. Journal of Microbiological Methods 44(2): 159-172.
Moin, N. S., K. A. Nelson, A. Bush and A. E. Bernhard (2009). Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Applied and Environmental Microbiology 75(23): 7461-7468.
Mosier, A. C., E. E. Allen, M. Kim, S. Ferriera and C. A. Francis (2012). Genome sequence of “Candidatus Nitrosopumilus salaria BD31, an ammonia-oxidizing archaeon from the San Francisco Bay Estuary. Journal of Bacteriology 194(8): 2121-2122.
Mosier, A. C. and C. A. Francis (2008). Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environmental Microbiology 10(11): 3002-3016.
Moussa, M. S., D. U. Sumanasekera, S. H. Ibrahim, H. J. Lubberding, C. M. Hooijmans, H. J. Gijzen and M. C. M. v. Loosdrecht (2006). Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers. Water Research 40(7): 1377-1388.
Mulder, A., A. van de Graaf, L. Robertson and J. Kuenen (1995). Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology 16(3): 177-184.
Norton, J., J. Alzerreca, Y. Suwa and M. Klotz (2002). Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria. Archives of Microbiology 177(2): 139-149.
Oishi, R., K. Hirooka, K. Otawa, C. Tada and Y. Nakai (2012). Ammonia-oxidizing Archaea in laboratory-scale activated sludge systems for wastewater of low- or high-ammonium concentration. Animal Science Journal 83(7): 571-576.
Park, H.-D. and D. R. Noguera (2004). Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Research 38(14-15): 3275-3286.
Park, H.-D., J. M. Regan and D. R. Noguera (2002). Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes. Water Science & Technology 46(1-2): 273-280.
Park, H.-D., G. F. Wells, H. Bae, C. S. Criddle and C. A. Francis (2006). Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and Environmental Microbiology 72(8): 5643-5647.
Park, H. D. and D. R. Noguera (2007). Characterization of two ammonia-oxidizing bacteria isolated from reactors operated with low dissolved oxygen concentrations. Journal of Applied Microbiology 102(5): 1401-1417.
Peck, J. E. (2010). Multivariate analysis for community ecologists: step-by-step using PC-ORD. Oregon, USA, MjM Software Design.
Pester, M., C. Schleper and M. Wagner (2011). The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Current Opinion in Microbiology 14(3): 300-306.
Preston, C. M., K. Y. Wu, T. F. Molinski and E. F. DeLong (1996). A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proceedings of the National Academy of Sciences 93(13): 6241-6246.
Purkhold, U., A. Pommerening-Roser, S. Juretschko, M. C. Schmid, H.-P. Koops and M. Wagner (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology 66(12): 5368-5382.
Purkhold, U., M. Wagner, G. Timmermann, A. Pommerening-Roser and H.-P. Koops (2003). 16S rRNA and amoA-based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: extension of the dataset and proposal of a new lineage within the nitrosomonads. International Journal of Systematic and Evolutionary Microbiology 53(5): 1485-1494.
Ramette, A. (2007). Multivariate analyses in microbial ecology. FEMS Microbiology Ecology 62(2): 142-160.
Randall, C. W., V. M. Pattarkine and S. A. McClintock (1992). Nitrification kinetics in single-sludge biological nutrient removal activated sludge systems. Water Science & Technology 25( 6): 195-214.
Rees, G., D. Baldwin, G. Watson, S. Perryman and D. Nielsen (2005). Ordination and significance testing of microbial community composition derived from terminal restriction fragment length polymorphisms: application of multivariate statistics. Antonie van Leeuwenhoek 86(4): 339-347.
Rittmann, B. E. and P. L. McCarty (2001). Environmental biotechnology: principles and applications. New YorK, NY, McGraw-Hill Higher Education.
Rotthauwe, J. H., K. P. Witzel and W. Liesack (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology 63(12): 4704-4712.
Ryther, J. H. and W. M. Dunstan (1971). Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science (New York, N.Y.) 171(3975): 1008-1013.
Sahan, E. and G. Muyzer (2008). Diversity and spatio-temporal distribution of ammonia-oxidizing Archaea and Bacteria in sediments of the Westerschelde estuary. FEMS Microbiology Ecology 64(2): 175-186.
Santoro, A. E., C. A. Francis, N. R. d. Sieyes and A. B. Boehm (2008). Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environmental Microbiology 10(4): 1068 - 1079.
Sauder, L. A., K. Engel, J. C. Stearns, A. P. Masella, R. Pawliszyn and J. D. Neufeld (2011). Aquarium nitrification revisited: thaumarchaeota are the dominant ammonia oxidizers in freshwater aquarium biofilters. PLoS ONE 6(8): e23281.
Schleper, C., G. Jurgens and M. Jonuscheit (2005). Genomic studies of uncultivated archaea. Nature Reviews Microbiology 3(6): 479-488.
Schloss, P. D. and J. Handelsman (2005). Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71(3): 1501-1506.
Shepard, R. N. (1966). Metric structures in ordinal data. Journal of Mathematical Psychology 3(2): 287-315.
Siripong, S. and B. E. Rittmann (2007). Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Research 41: 1110-1120.
Sonthiphand, P. and T. Limpiyakorn (2011). Change in ammonia-oxidizing microorganisms in enriched nitrifying activated sludge. Applied Microbiology and Biotechnology 89(3): 843-853.
Spang, A., R. Hatzenpichler, C. Brochier-Armanet, T. Rattei, P. Tischler, E. Spieck, W. Streit, D. A. Stahl, M. Wagner and C. Schleper (2010). Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends in Microbiology 18(8): 331-340.
Starkenburg, S. R., P. S. G. Chain, L. A. Sayavedra-Soto, L. Hauser, M. L. Land, F. W. Larimer, S. A. Malfatti, M. G. Klotz, P. J. Bottomley, D. J. Arp and W. J. Hickey (2006). Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255. Applied and Environmental Microbiology 72(3): 2050-2063.
Stehr, G., B. Böttcher, P. Dittberner, G. Rath and H. P. Koops (1995). The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiology Ecology 17(3): 177-186.
Stein, J. L., T. L. Marsh, K. Y. Wu, H. Shizuya and E. F. DeLong (1996). Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. Journal of Bacteriology 178(3): 591-599.
Suwa, Y., Y. Imamura, T. Suzuki, T. Tashiro and Y. Urushigawa (1994). Ammonia-oxidizing bacteria with different sensitivities to (NH4)2SO4 in activated sludges. Water Research 28(7): 1523-1532.
Suwa, Y., T. Sumino and K. Noto (1997). Phylogenetic relationships of activated sludge isolates of ammonia oxidizers with different sensitivities to ammonium sulfate. The Journal of general and applied microbiology 43: 373-379.
Takai, K., D. P. Moser, M. DeFlaun, T. C. Onstott and J. K. Fredrickson (2001). Archaeal Diversity in waters from deep south african gold mines. Applied and Environmental Microbiology 67(12): 5750-5760.
Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28(10): 2731-2739.
Terahara, T., T. Hoshino, S. Tsuneda, A. Hirata and Y. Inamori (2004). Monitoring the microbial population dynamics at the start-up stage of wastewater treatment reactor by terminal restriction fragment length polymorphism analysis based on 16S rDNA and rRNA gene sequences. Journal of Bioscience and Bioengineering 98(6): 425-428.
Tiquia, S. (2010). Using terminal restriction fragment length polymorphism (T-RFLP) analysis to assess microbial community structure in compost systems. Bioremediation. S. P. Cummings, Humana Press. 599: 89-102.
Torre, J. R. d. l., C. B. Walker, A. E. Ingalls, M. Koneke and D. A. Stahl (2008). Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environmental Microbiology 10(3): 810-818.
Tourna, M., M. Stieglmeier, A. Spang, M. Könneke, A. Schintlmeister, T. Urich, M. Engel, M. Schloter, M. Wagner, A. Richter and C. Schleper (2011). Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proceedings of the National Academy of Sciences 108(20): 8420-8425.
Treusch, A. H., S. Leininger, A. Kletzin, S. C. Schuster, H.-P. Klenk and C. Schleper (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology 7(12): 1985-1995.
Urakawa, H., Y. Tajima, Y. Numata and S. Tsuneda (2008). Low temperaturedecreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquarium biofiltration systems. Applied and Environmental Microbiology 74(3): 894-900.
US-EPA (1993). Manual: Nitrogen Control. Cincinnati, OH US-EPA.
Venter, J. C., K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch, J. A. Eisen, D. Wu, I. Paulsen, K. E. Nelson, W. Nelson, D. E. Fouts, S. Levy, A. H. Knap, M. W. Lomas, K. Nealson, O. White, J. Peterson, J. Hoffman, R. Parsons, H. Baden-Tillson, C. Pfannkoch, Y.-H. Rogers and H. O. Smith (2004). Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66-74.
Vianna, M. E., G. Conrads, B. P. F. A. Gomes and H. P. Horz (2009). T-RFLP-based mcrA gene analysis of methanogenic archaea in association with oral infections and evidence of a novel Methanobrevibacter phylotype. Oral Microbiology and Immunology 24(5): 417-422.
Walker, C. B., J. R. d. la Torre, M. G. Klotz, H. Urakawa, N. Pinel, D. J. Arp, C. Brochier-Armanet, P. S. G. Chain, P. P. Chan, A. Gollabgir, J. Hemp, M. Hügler, E. A. Karr, M. Könneke, M. Shin, T. J. Lawton, T. Lowe, W. Martens-Habbena, L. A. Sayavedra-Soto, D. Lang, S. M. Sievert, A. C. Rosenzweig, G. Manning and D. A. Stahl (2010). Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proceedings of the National Academy of Sciences: -.
Wallenstein, M. D., D. D. Myrold, M. Firestone and M. Voytek (2006). Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecological Applications 16 (6): 2143-2152.
Wang, X., X. Wen, C. Criddle, G. Wells, J. Zhang and Y. Zhao (2010). Community analysis of ammonia-oxidizing bacteria in activated sludge of eight wastewater treatment systems. Journal of Environmental Sciences 22(4): 627-634.
Watson, S. W. (1965). Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus sp. N. Limnology and Oceanography 10: 274-289.
Wells, G. F., H.-D. Park, C.-H. Yeung, B. Eggleston, C. A. Francis and C. S. Criddle (2009). Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: betaproteobacterial dynamics and low relative abundance of Crenarchaeae. Environmental Microbiology 11(9): 2310-2328.
Whang, L.-M., I. C. Chien, S.-L. Yuan and Y.-J. Wu (2009). Nitrifying community structures and nitrification performance of full-scale municipal and swine wastewater treatment plants. Chemosphere 75(2): 234-242.
Williams, W. T. and J. M. Lambert (1959). Multivariate methods in plant ecology: I. association-analysis in plant communities. Journal of Ecology 47(1): 83-101.
Wu, Y.-J., L.-M. Whang, T. Fukushima and S.-H. Chang (2012). Responses of Ammonia-Oxidizing Archaeal and betaproteobacterial Populations to Wastewater Salinity in a Full-Scale Municipal Wastewater Treatment Plant. Journal of Bioscience and Bioengineering In print.
Xing, D., S. Cheng, J. M. Regan and B. E. Logan (2009). Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosensors and Bioelectronics 25(1): 105-111.
Yu, T., D. Li, R. Qi, S.-t. Li, S.-w. Xu and M. Yang (2011). Structure and dynamics of nitrifier populations in a full-scale submerged membrane bioreactor during start-up. Applied Microbiology and Biotechnology 90(1): 369-376.
Zhang, T., T. Jin, Q. Yan, M. Shao, G. Wells, C. Criddle and H. H. P. Fang (2009). Occurrence of ammonia-oxidizing Archaea in activated sludges of a laboratory scale reactor and two wastewater treatment plants. Journal of Applied Microbiology 107(3): 970-977.
Zhang, T., L. Ye, A. Tong, M.-F. Shao and S. Lok (2011). Ammonia-oxidizing archaea and ammonia-oxidizing bacteria in six full-scale wastewater treatment bioreactors. Applied Microbiology and Biotechnology 91(4): 1215-1225.
Zhu, G., Y. Peng, B. Li, J. Guo, Q. Yang and S. Wang (2008). Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology: 159-195.
Zhu, G., Y. Peng, L. Zhai, Y. Wang and S. Wang (2009). Performance and optimization of biological nitrogen removal process enhanced by anoxic/oxic step feeding. Biochemical Engineering Journal 43(3): 280-287.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔