跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郁賢
研究生(外文):Yu-HsienLin
論文名稱:兩段式(部分硝化/厭氧氨氧化)生物除氮實驗室及模廠程序應用在高氮廢水處理之研究
論文名稱(外文):Two-stage Process Application of Partial Nitrification and ANAMMOX for Nitrogenous Wastewater treatment in Lab and Pilot Scale
指導教授:鄭幸雄鄭幸雄引用關係
指導教授(外文):Shing-Shung Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:186
中文關鍵詞:自營性生物除氮部份硝化厭氧氨氧化
外文關鍵詞:autotrophic biological nitrogen removalpartial nitrificationANAMMOX
相關次數:
  • 被引用被引用:1
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是建立一自營性除氮生物程序,並由實驗室規模之操作最佳化參數放大至噸級模場規模生物除氮程序。其中包含兩段式程序 (Partial nitrification/ANAMMOX)來處理石化廢水,其屬於高氮低碳廢水 (TKN/COD 〉5),經現場水質調查後發現在現場石化廢水中,總氮以氨氮及硝酸氮為主,其氨氮約有350-400 mg N/L,而硝酸氮於現場出流水質約為30 mg N/L。本研究針對現場放流水部分進行處理,故在部分硝化程序中欲將氨氮轉換成50%氨氮及50%亞硝酸氮,並在厭氧氨氧化程序中將1:1的氨氮及亞硝酸氮進行自營性脫氮作用,研究中除了應用實驗室之操作參數於模廠中,並探討其放大後之參數操作及設計。
在部分硝化程序中,須將硝化菌中之亞硝酸氧化菌(NOB)抑制,使氨氧化菌(AOB)成為優勢族群。實驗室規模操作上,pH控制在較高的7.8,並在35-42⁰C中溫條件下,分子氨濃度控制在10-30 mg N/L,於500天連續操作中成功將NOB抑制 (硝酸氮僅生成3 mg N/L)。而在產生亞硝酸量的控制上,以氧傳之方式進行KLa的計算後,由間接曝氣提供限制氧量來達到控制氨氮和亞硝酸氮的比例生成 (實驗室約0.8-1.5)。由於模廠植種源微生物族群較多元,且由於反應槽形式為固定床,無法將NOB藉由洗出作篩選,故雖模廠操作使用相同的策略,溫度上並未予以調控,跟隨氣候而改變 (約24-35⁰C),分子氨濃度的調控上略比實驗室操作上來得高才能有效抑制NOB (約在20-50 mg N/L)。
厭氧氨氧化程序中,實驗室中以兩種型式之反應槽進行操作,一為UASB強化培養槽,另一為固定床形式與前段PN程序串聯處理廢水。而在模廠操作上則使用UASB系統來進行反應槽體設計,配合上升流速1.5-2.5 m/hr避免污泥洗出。厭氧氨氧化菌之生長速率緩慢,故在模廠操作上不易,在約300天的操作下,其總氮去除最佳僅達到5-10%。
This study is aim at establishing an autotrophic biological nitrogen removal process, and scaling up the biological nitrogen removal process to pilot-scale, which are two-stage processes such as partial nitrification (PN) and ANAMMOX, based on the lab-scale processes operation parameters and experience. The target pollutant is petrochemical wastewater which contains high nitrogen and low carbon. After estimating the petrochemical wastewater quality, the effluent of ammonium and nitrate concentration were about 350-400 and 30 mg N/L, respectively. In PN, 50% of total ammonium will be converted to nitrite, and ANAMMOX process will treat the ammonium and nitrite continuously.
Inhibition of NOB and controlling the nitrite production rate are important in PN process. According to some references, PN reactor in lab-scale controlled the pH to 7.8 and free ammonium (FA) concentration at 10-30 mg N/L at 35-42⁰C. After operating 500 days, the NOB was inhibited successfully, and the AOB became the domainating bacteria. Besides, after calculating the oxygen transfer by KLa and interval aeration, the nitrite and ammonium ratio could be controlled (the ratio was 0.8-1.5 in lab-scale). Because pilot-scale PN reactor seeding source was different from lab-scale PN reactor, the microbial community is more diverse in pilot-scale PN reactor. Moreover, it was not able to wash out NOB due to reactor type of fixed bed. Therefore, to inhibit NOB, FA had to be controlled higher (20-50 mg N/L).
There are two type ANANNOX reactors, which are UASB and fixed-bed, in lab-scale reactors. The UASB type is ANAMMOX enrichment reactor, and the fixed-bed type is combined with PN reactor. For pilot-scale ANAMMOX reactor, UASB was chosen for reactor design. In order to avoid the sludge wash-out, the superficial velocity should be controlled carefully (1.5-2.5 m/hr). Because of the low growth rate of ANAMMOX bacteria, TN removal efficiency was only 5-10% after 300 days operation.
中文摘要 1
ABSTRACT 3
第一章 前言 16
第二章 文獻回顧 18
2.1 含氮廢水現況與特性 18
2.1.1氮的循環 18
2.1.2含氮廢水排放現況 21
2.1.3含氮工業廢水水質特性 25
2.1.4國內外含氮工業廢水放流水法規現況及增訂 27
2.2 生物除氮程序及微生物生理特性介紹 30
2.2.1 傳統硝化/脫硝 30
2.2.2 硝化菌與脫硝菌生理特性 32
2.2.3 厭氧氨氧化相關之除氮程序 33
2.2.4 厭氧氨氧化菌相關生理特性 37
2.2.5 傳統硝化/脫硝程序與Nitrification/ANAMMOX比較 40
2.3 部份硝化與厭氧氨氧化程序之控制與應用 42
2.3.1 部分硝化程序關鍵因子之控制 42
2.3.2 厭氧氨氧化相關程序應用 49
2.4 近年國內外實廠及模廠介紹 53
第三章 材料與方法 64
3.1 研究架構與生物反應器介紹 64
3.1.1固定床部分硝化與厭氧氨氧化槽-實驗室規模 (Lab scale) 65
3.1.2污泥床厭氧氨氧化菌馴養槽 (Enrichment reactor of ANAMMOX) 69
3.1.3固定床部分硝化槽-模廠規模 (Pilot scale) 71
3.1.4污泥床厭氧氨氧化槽-模廠規模 (Pilot scale) 72
3.2 反應器氧氣質量傳輸特性與計算 74
3.3 硝化菌活性測試-比攝氧速率 (OUR Respirometry) 76
3.4 一般水質分析項 77
3.5 儀器分析 77
3.6 電子顯微鏡之生物外觀與菌相觀察 78
3.7 分子生物技術 79
3.7.1 DNA萃取(Modified Miller/Glass-Bead Beating Method) 79
3.7.2 聚合酵素連鎖反應(Polymerase Chain Reaction, PCR) 81
3.7.3 16S rRNA選殖實驗(Clone library) 83
第四章 結果與討論 85
4.1 石化產業廢水特性及處理程序可行性探討 85
4.1.1 石化聯合污水處理廠放流水特性 85
4.1.2 石化聯合污水處理廠功能評估 87
4.1.3 廢水處理程序可行性探討 89
4.1.4 石化廢水污泥分解實際廢水之可行性結語 95
4.2 部分硝化與厭氧氨氧化程序實驗室規模連續流功能評估 96
4.2.1固定床部分硝化槽之氧傳試驗 96
4.2.2固定床部分硝化槽操作參數及功能指標之探討 98
4.2.3固定床部分硝化槽氧氣質量之平衡驗證 102
4.2.4固定床厭氧氨氧化槽操作參數及功能指標之探討 103
4.2.5 污泥床厭氧氨氧化強化培養槽之功能探討 109
4.3 部分硝化與厭氧氨氧化程序模廠規模連續流功能評估 112
4.3.1固定床部分硝化槽之氧傳試驗 113
4.3.2固定床部分硝化槽操作參數及功能指標之探討 114
4.3.3固定床部分硝化槽調整關鍵因子之探討 125
4.3.4 厭氧氨氧化程序預培養槽之功能探討 130
4.3.5污泥床厭氧氨氧化槽操作參數及功能指標之探討 132
4.3.6厭氧氨氧化模廠污泥床控制之功能探討 141
4.4 部分硝化槽及厭氧氨氧化槽模廠之裝備問題及解決辦法 147
4.4.1模廠部分硝化槽問題及解決辦法 147
4.4.2模廠厭氧氨氧化槽問題及解決辦法 152
4.5 模廠部份硝化槽微生物分子生態之探討 154
4.5.1 模廠部分硝化槽操作期間之菌種分生特性表現 154
4.5.2模廠部分硝化槽操作期間之微生物菌相觀察 (SEM) 157
4.5.3模廠部分硝化槽操作期間之監測氨氧化菌變化(TRFLP) 159
4.6 模廠厭氧氨氧化槽微生物生態之探討 161
4.6.1石化廢水廠迴流污泥培養槽植種源之菌種分生特性表現 161
4.6.2石化廢水廠迴流污泥培養槽植種源之微生物菌相觀察 (SEM) 166
4.6.3模廠厭氧氨氧化槽操作期間之菌種分生特性表現 167
4.6.4模廠厭氧氨氧化槽操作期間之微生物菌相觀察 (SEM) 174
第五章 結論與建議 177
5.1 結論 177
5.2 建議 179
第六章 參考文獻 181
Abeling, U., Seyfried, C.F. 1992. Anaerobic-Aerobic Treatment of High-Strength Ammonium Waste-Water - Nitrogen Removal Via Nitrite. Water Science and Technology, 26(5-6), 1007-1015.
Ahn, Y.H. 2006. Sustainable nitrogen elimination biotechnologies: A review. Process Biochemistry, 41(8), 1709-1721.
Alleman, J.E. 1984. Elevated Nitrite Occurrence In Biological Wastewater Treatment Systems. Water Science and Technology, 17, 409-419.
Anthonisen, A.C., Loehr, R.C., Prakasam, T.B.S., Srinath, E.G. 1976. Inhibition of Nitrification by Ammonia and Nitrous-Acid. Journal Water Pollution Control Federation, 48(5), 835-852.
Arp, D.J., Chain, P.S., Klotz, M.G. 2007. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol, 61, 503-28.
Beijerinck, M.W. 1888. Die Bacterien der Papillionaceen Knoellchen. Bot Zeitung, 46, 797-804.
Bernet, N., Dangcong, P., Delgenes, J.P., Moletta, R. 2001. Nitrification at low oxygen concentration in biofilm reactor. Journal of Environmental Engineering-Asce, 127(3), 266-271.
Beun, J.J., van Loosdrecht, M.C.M., Heijnen, J.J. 2000. Aerobic granulation. Water Science and Technology, 41(4-5), 41-48.
Blackburne, R., Yuan, Z.G., Keller, J. 2008. Partial nitrification to nitrite using low dissolved oxygen concentration as the main selection factor. Biodegradation, 19(2), 303-312.
Chen, H.H., Liu, S.T., Yang, F.L., Xue, Y., Wang, T. 2009. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal. Bioresource Technology, 100(4), 1548-1554.
Chuang, H.P., Ohashi, A., Imachi, H., Tandukar, M., Harada, H. 2007. Effective partial nitrification to nitrite by down-flow hanging sponge reactor under limited oxygen condition. Water Res, 41(2), 295-302.
Dapena-Mora, A., Fernandez, I., Campos, J.L., Mosquera-Corral, A., Mendez, R., Jetten, M.S.M. 2007. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40(4), 859-865.
Desloover, J., De Clippeleir, H., Boeckx, P., Du Laing, G., Colsen, J., Verstraete, W., Vlaeminck, S.E. 2011. Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Research, 45(9), 2811-2821.
Egli, K., Fanger, U., Alvarez, P.J., Siegrist, H., van der Meer, J.R., Zehnder, A.J. 2001. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Archives of Microbiology, 175(3), 198-207.
Ford, D.L., Churchwell, R.L., Kachtick, J.W. 1980. Comprehensive Analysis of Nitrification of Chemical-Processing Wastewaters. Journal Water Pollution Control Federation, 52(11), 2726-2746.
Furukawa, K., Yamamoto, T., Takaki, K., Koyama, T. 2006. Novel partial nitritation treatment for anaerobic digestion liquor of swine wastewater using swim-bed technology. Journal of Bioscience and Bioengineering, 102(6), 497-503.
Ganigue, R., Lopez, H., Balaguer, M.D., Colprim, J. 2007. Partial ammonium oxidation to nitrite of high ammonium content urban land fill leachates. Water Research, 41(15), 3317-3326.
Gayon, U., Dupetit, G. 1886. Recherches sur la reduction des nitrates par les infiniment petits. Mem Sot Sci Phys Nat Bordeaux Ser, 3, 201-307.
Guo, X., Kim, J.H., Behera, S.K., Park, H.S. 2008. Influence of dissolved oxygen concentration and aeration time on nitrite accumulation in partial nitrification process. International Journal of Environmental Science and Technology, 5(4), 527-534.
Gupta, A.B., Gupta, S.K. 2001. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Research, 35(7), 1714-1722.
Hagopian, D.S., Riley, J.G. 1998. A closer look at the bacteriology of nitrification. Aquacultural Engineering, 18(4), 223-244.
Haldane, J.B.S. 1965. Enzymes. M.I.T. Press, Cambridge.
Hanaki, K., Wantawin, C., Ohgaki, S. 1990. Nitrification at Low-Levels of Dissolved-Oxygen with and without Organic Loading in a Suspended-Growth Reactor. Water Research, 24(3), 297-302.
Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., van Loosdrecht, M.C.M., Heijnen, J.J. 1998. The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water. Water Science and Technology, 37(9), 135-142.
Hellinga, C., Van Loosdrecht, M.C.M., Heijnen, J.J. 1999. Model based design of a novel process for nitrogen removal from concentrated flows. Mathematical and Computer Modelling of Dynamical Systems, 5(4), 351-371.
Jetten, M.S.M., Wagner, M., Fuerst, J., van Loosdrecht, M., Kuenen, G., Strous, M. 2001. Microbiology and application of the anaerobic ammonium oxidation ('anammox') process. Current Opinion in Biotechnology, 12(3), 283-288.
Johnstone, B.H., Jones, R.D. 1988. Effects of Light and CO on the Survival of a Marine Ammonium-Oxidizing Bacterium during Energy Source Deprivation. Appl Environ Microbiol, 54(12), 2890-3.
Killham, K. 1986. Heterotrophic nitri¢cation. In: Nitri¢cation. 117-126.
Kim, D.J., Lee, D.I., Keller, J. 2006. Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH. Bioresour Technol, 97(3), 459-68.
Knowles, G., Downing, A.L., Barrett, M.J. 1965. Determination of Kinetic Constants for Nitrifying Bacteria in Mixed Culture, with the Aid of an Electronic Computer. J Gen Microbiol, 38, 263-78.
Koops, H.P., Bottcher, B., Moller, U.C., Pommerening-Roser, A., Stehr, G. 1990. Description of a new species of Nitrosococcus. Arch. Microbiol, 154, 244-248.
Koops, H.P., Pommerening-Roser, A. 2001. Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. Fems Microbiology Ecology, 37(1), 1-9.
Kowalchuk, G.A., Stephen, J.R. 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu Rev Microbiol, 55, 485-529.
Kuenen, J.G. 2008. Anammox bacteria: from discovery to application. Nat Rev Microbiol, 6(4), 320-6.
Kuenen, J.G., Jetten, M.S.M. 2001. Extraordinary anaerobic ammonium-oxidizing bacteria. Asm News, 67(9), 456-+.
Kuo, D.H.W., Robinson, K.G., Layton, A.C., Meyers, A.J., Sayler, G.S. 2006. Real-time PCR quantification of ammonia-oxidizing bacteria (AOB): Solids retention time (SRT) impacts during activated sludge treatment of industrial wastewater. Environmental Engineering Science, 23(3), 507-520.
Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., Damste, J.S.S., Strous, M., Jetten, M.S.M. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature, 422(6932), 608-611.
Laanbroek, H.J., Bodelier, P.L.E., Gerards, S. 1994. Oxygen-Consumption Kinetics of Nitrosomonas-Europaea and Nitrobacter-Hamburgensis Grown in Mixed Continuous Cultures at Different Oxygen Concentrations. Arch Microbiol, 161(2), 156-162.
Laanbroek, H.J., Gerards, S. 1993. Competition for Limiting Amounts of Oxygen between Nitrosomonas-Europaea and Nitrobacter-Winogradskyi Grown in Mixed Continuous Cultures. Arch Microbiol, 159(5), 453-459.
Layton, A.C., Dionisi, H., Kuo, H.W., Robinson, K.G., Garrett, V.M., Meyers, A., Sayler, G.S. 2005. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Applied and Environmental Microbiology, 71(2), 1105-1108.
Levenspi.O. 1972. Experimental Search for a Simple Rate Equation to Describe Deactivating Porous Catalyst Particles. Journal of Catalysis, 25(2), 265-&.
Mandt, M.G., Bathija, P.R. 1978. Jet Fluid Gas/Liquid Contacting and Mixing. AIChE Symposium Series, 73.
Mulder, A., van de graaf, A.A., Robertson, L.A., Kuenen, J.G. 1995. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized-Bed Reactor. Fems Microbiology Ecology, 16(3), 177-183.
Okabe, S., Oshiki, M., Takahashi, Y., Satoh, H. 2011. Development of long-term stable partial nitrification and subsequent anammox process. Bioresour Technol, 102(13), 6801-7.
Padmavathi, G., Rao, K.R. 1991. Hydrodynamic Characteristics of Reversed Flow Jet Loop Reactor as a Gas-Liquid Solid Contactor. Chemical Engineering Science, 46(12), 3293-3296.
Painter, H.A., Loveless, J.E. 1983. Effect of Temperature and Ph Value on the Growth-Rate Constants of Nitrifying Bacteria in the Activated-Sludge Process. Water Res, 17(3), 237-248.
Peng, Y., Zhu, G. 2006. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Appl Microbiol Biotechnol, 73(1), 15-26.
Peng, Y.Z., Li, Y.Z., Peng, C.Y., Wang, S.Y. 2004. Nitrogen removal from pharmaceutical manufacturing wastewater with high concentration of ammonia and free ammonia via partial nitrification and denitrification. Water Sci Technol, 50(6), 31-6.
Pol, L.W.H., Lopes, S.I.D., Lettinga, G., Lens, P.N.L. 2004. Anaerobic sludge granulation. Water Research, 38(6), 1376-1389.
Pollice, A., Tandoi, V., Lestingi, C. 2002. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate. Water Res, 36(10), 2541-2546.
Rittmann, B.E., McCarty, P.L. 2001. Environmental Biotechnology: Principles and Application. McGraw-Hill, New York.
Robertson, L.A., Kuenen, J.G. 1990. Combined Heterotrophic Nitrification and Aerobic Denitrification in Thiosphaera-Pantotropha and Other Bacteria. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 57(3), 139-152.
Robertson, L.A., Kuenen, J.G. 1988. Heterotrophic Nitrification in Thiosphaera-Pantotropha - Oxygen-Uptake and Enzyme Studies. Journal of General Microbiology, 134, 857-863.
Rooney, T.C., Huibregtse, G.L. 1980. Increased Oxygen-Transfer Efficiency with Coarse Bubble Diffusers. Journal Water Pollution Control Federation, 52(9), 2315-2326.
Ruiz, G., Jeison, D., Chamy, R. 2003. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Res, 37(6), 1371-7.
Schmid, M., Twachtmann, U., Klein, M., Strous, M., Juretschko, S., Jetten, M., Metzger, J.W., Schleifer, K.H., Wagner, M. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology, 23(1), 93-106.
Schmid, M., Walsh, K., Webb, R., Rijpstra, W.I.C., van de Pas-Schoonen, K., Verbruggen, M.J., Hill, T., Moffett, B., Fuerst, J., Schouten, S., Damste, J.S.S., Harris, J., Shaw, P., Jetten, M., Strous, M. 2003. Candidatus Scalindua brodae, sp nov., Candidatus Scalindua wagneri, sp nov., two new species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology, 26(4), 529-538.
Schmidt, I.I., Bock, E. 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch Microbiol, 167(2/3), 106-11.
Shore, J.L., M'Coy, W.S., Gunsch, C.K., Deshusses, M.A. 2012. Application of a moving bed biofilm reactor for tertiary ammonia treatment in high temperature industrial wastewater. Bioresource Technology, 112, 51-60.
Sliekers, A.O., Haaijer, S., Schmid, M., Harhangi, H., Verwegen, K., Kuenen, J.G., Jetten, M.S.M. 2004. Nitrification and Anammox with urea as the energy source. Systematic and Applied Microbiology, 27(3), 271-278.
Sliekers, A.O., Haaijer, S.C.M., Stafsnes, M.H., Kuenen, J.G., Jetten, M.S.M. 2005. Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations. Applied Microbiology and Biotechnology, 68(6), 808-817.
Sliekers, A.O., Third, K.A., Abma, W., Kuenen, J.G., Jetten, M.S. 2003. CANON and Anammox in a gas-lift reactor. Fems Microbiology Letters, 218(2), 339-44.
Strous, M., Fuerst, J.A., Kramer, E.H.M., Logemann, S., Muyzer, G., van de Pas-Schoonen, K.T., Webb, R., Kuenen, J.G., Jetten, M.S.M. 1999a. Missing lithotroph identified as new planctomycete. Nature, 400(6743), 446-449.
Strous, M., Heijnen, J.J., Kuenen, J.G., Jetten, M.S.M. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Applied Microbiology and Biotechnology, 50(5), 589-596.
Strous, M., Kuenen, J.G., Jetten, M.S.M. 1999b. Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7), 3248-3250.
Strous, M., Pelletier, E., Mangenot, S., Rattei, T., Lehner, A., Taylor, M.W., Horn, M., Daims, H., Bartol-Mavel, D., Wincker, P., Barbe, V., Fonknechten, N., Vallenet, D., Segurens, B., Schenowitz-Truong, C., Medigue, C., Collingro, A., Snel, B., Dutilh, B.E., Op den Camp, H.J.M., van der Drift, C., Cirpus, I., van de Pas-Schoonen, K.T., Harhangi, H.R., van Niftrik, L., Schmid, M., Keltjens, J., van de Vossenberg, J., Kartal, B., Meier, H., Frishman, D., Huynen, M.A., Mewes, H.W., Weissenbach, J., Jetten, M.S.M., Wagner, M., Le Paslier, D. 2006. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature, 440(7085), 790-794.
Strous, M., VanGerven, E., Zheng, P., Kuenen, J.G., Jetten, M.S.M. 1997. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations. Water Research, 31(8), 1955-1962.
Stuven, R., Vollmer, M., Bock, E. 1992. The Impact of Organic-Matter on Nitric-Oxide Formation by Nitrosomonas-Europaea. Archives of Microbiology, 158(6), 439-443.
Third, K.A., Sliekers, A.O., Kuenen, J.G., Jetten, M.S.M. 2001. The CANON system (completely autotrophic nitrogen-removal over nitrite) under ammonium limitation: Interaction and competition between three groups of bacteria. Systematic and Applied Microbiology, 24(4), 588-596.
Turk, O., Mavinic, D.S. 1987. Benefits of Using Selective-Inhibition to Remove Nitrogen from Highly Nitrogenous Wastes. Environmental Technology Letters, 8(9), 419-426.
van de Graaf, A.A., de Bruijn, P., Robertson, L.A., Jetten, M.S.M., Kuenen, J.G. 1996. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor. Microbiology-Uk, 142, 2187-2196.
van der Star, W.R., Miclea, A.I., van Dongen, U.G., Muyzer, G., Picioreanu, C., van Loosdrecht, M.C. 2008. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnology and Bioengineering, 101(2), 286-94.
van der Star, W.R.L., Abma, W.R., Blommers, D., Mulder, J.W., Tokutomi, T., Strous, M., Picioreanu, C., Van Loosdrecht, M.C.M. 2007. Startup of reactors for anoxic ammonium oxidation: Experiences from the first full-scale anammox reactor in Rotterdam. Water Research, 41(18), 4149-4163.
van Dongen, U., Jetten, M.S., van Loosdrecht, M.C. 2001. The SHARON-Anammox process for treatment of ammonium rich wastewater. Water Sci Technol, 44(1), 153-60.
Verstraete, W., Philips, S. 1998. Nitrification-denitrification processes and technologies in new contexts. Environmental Pollution, 102, 717-726.
Wachsmann, U., Rabiger, N., Vogelpohl, A. 1985. Influence of Geometry on Hydrodynamics and Mass-Transfer in a Compact Reactor. Chemie Ingenieur Technik, 57(4), 346-347.
Wang, C.C., Lee, P.H., Kumar, M., Huang, Y.T., Sung, S.W., Lin, J.G. 2010. Simultaneous partial nitrification, anaerobic ammonium oxidation and denitrification (SNAD) in a full-scale landfill-leachate treatment plant. Journal of Hazardous Materials, 175(1-3), 622-628.
Wen, J.P., Ping, N., Lin, H., Chen, Y.L. 2002. Local overall gas-liquid mass transfer coefficient in a gas-liquid-solid reversed flow jet loop reactor. Chemical Engineering Journal, 88(1-3), 209-213.
Wett, B. 2006. Solved upscaling problems for implementing deammonification of rejection water. Water Science and Technology, 53(12), 121-128.
Wett, B., Murthy, S., Takács, I., Hell, M., Bowden, G., Deur, A., O'Shaughnessy, M. 2007. Key Parameters For Control of DEMON Deamonification Process. Water Practice, 1, 1-11.
Wiesmann, U. 1994. Biological nitrogen removal from wastewater Advances in Biochemical Engineering/Biotechnology, 51, 113-154.
Winogradsky, S. 1890. Recherches sur les Organismes de la Nitrification. Comp Rendu, 110, 1013-1016.
Wyffels, S., Van Hulle, S.W., Boeckx, P., Volcke, E.I., Van Cleemput, O., Vanrolleghem, P.A., Verstraete, W. 2004. Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR). Biotechnol Bioeng, 86(5), 531-42.
Yildiz, E., Keskinler, B., Pekdemir, T., Akay, G., Nuhoglu, A. 2005. High strength wastewater treatment in a jet loop membrane bioreactor: kinetics and performance evaluation. Chemical Engineering Science, 60(4), 1103-1116.
Yuan, Q., Oleszkiewicz, J.A. 2011. Low temperature biological phosphorus removal and partial nitrification in a pilot sequencing batch reactor system. Water Sci Technol, 63(12), 2802-7.
Zhang, L., Yang, J., Furukawa, K. 2010. Stable and high-rate nitrogen removal from reject water by partial nitrification and subsequent anammox. J Biosci Bioeng, 110(4), 441-8.
Zumft, W.G. 1997. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 61(4), 533-616.

朱敬平、鍾裕仁、許國恩、黃欣桐、江家菱、王郁萱、烏春梅、吳碩傳. 2012. 產業廢水汙染調查及管制措施研議計畫
李雅菁、黃良銘. 2010. 針對TFT-LCD製程廢水實廠進行硝化效能評估與氨氧化菌群生態之研究. 國立成功大學環境工程研究所碩士論文
林翰璘、鄭幸雄. 2011. 三段式厭氧水解/亞硝酸化/厭氧氨氧化程序處理含氮光電廢水之永續技術開發. 國立成功大學環境工程研究所碩士論文
黃郁雯、鄭幸雄. 2012. 有效控制部分硝化串聯厭氧氨氧化程序處理高氮廢水之研究. 國立成功大學環境工程研究所碩士論文
夏惠萍、鄭幸雄. 2010. 光電廢水生物除氮程序模型場功能評估與微生物指標建立. 國立成功大學環境工程研究所碩士論文
陳廷光, 陳重男, 倪振鴻. 2002. GREEN MEMBIOR®生物薄膜程序處理TFT-LCD製程有機廢水之研究. 第27屆廢水處理技術研討會論文.
陳賢焜、鄭幸雄. 1994. 生物膜硝化脫硝程序處理高濃度氨氮廢水之研究. 國立成功大學環境工程研究所博士論文
莊蕙萍、鄭幸雄. 2004. 三段式流體化床生物程序分解PAN廢水之族群變化與功能評估. 國立成功大學環境工程研究所碩士論文
黃淑君、鄭幸雄. 2005. 不織布薄膜反應槽好氧生物分解光電廢水程序功能及生態變化之研究. 國立成功大學環境工程研究所碩士論文
楊雅斐、鄭幸雄. 2004. 三段生物程序中好氧硝化槽功能評估與分生檢測生態研究. 國立成功大學環境工程研究所碩士論文
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊