跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳佳智
研究生(外文):Chia-ChihChen
論文名稱:二氧化錳及混凝前處理對薄膜阻塞影響之研究
論文名稱(外文):The Effect of MnO2 and Coagulation Pretreatment on Membrane Fouling
指導教授:葉宣顯
指導教授(外文):Hsuan-Hsien Yeh
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系碩博士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:91
中文關鍵詞:混凝高錳酸鉀二氧化錳低壓膜(MF/UF)阻塞
外文關鍵詞:coagulationpotassium permanganatemanganese dioxidelow pressure membrane (MF/UF)fouling
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
鑑於我國目前公共給水之水源約有65%來自湖庫,而部份湖庫有優養化現象,導致部份淨水廠遭遇原水藻類、有機物及錳濃度偏高之問題。低壓膜(MF/UF)近年來發展迅速,對藻類、隱孢子蟲及梨形鞭毛蟲等致病性原蟲,以及濁度有很高之去除率,且有佔地面積小,易自動化等優點。但阻塞現象之控制為薄膜程序成敗之關鍵。混凝可有效去除腐植質等大分子疏水性有機物所引起之阻塞,但對於小分子親水性有機物去除效果較差。高錳酸鉀可有效氧化優養化原水中所含之溶解性鐵離子與錳離子,亦有助於藻體之凝聚,且透過其還原產物固態之MnO2(S)可吸附親水性小分子有機物而去除之。故高錳酸鉀前氧化,混凝及MF/UF膜過濾為一可有效處理優養化原水之程序,亦可發展為偏遠地區簡易自來水之套裝處理設備。
至於 MnO2(S)之存在對於低壓膜之阻塞所可能產生之影響,文獻上之資料並不多見。故本研究進行MnO2(S)及其經鋁鹽或鐵鹽混凝所生成膠羽,在不同孔徑大小與材質之低壓膜上阻塞現象之探討。
本研究顯示明礬在適當加量下可有效地混凝去除二氧化錳懸浮液中之膠體,但過量會有再穩定現象,而氯化鐵則隨劑量增加,混凝效果越佳。在MF/UF過濾部分,則顯示二氧化錳懸浮液直接過濾對MF膜會有很嚴重之阻塞作用,主要是因二氧化錳之大小與MF膜孔洞大小接近,可能發生pore blocking或pore constriction。明礬在1 mg/L as Al加藥量下,混凝後含膠羽之懸浮液完全沒有通量下降之現象,而在10 mg/L as Al時,混凝後含膠羽之懸浮液會造成中度阻塞,推測是不同劑量下之膠體去穩定機制相異,膠羽在薄膜表面形成之濾餅比阻抗大小有別,孔隙率不同所導致。而10 mg/L as Al混凝後之上澄液,則是由於仍殘留粒徑較小之二氧化錳膠羽或混凝劑水解所產生之膠羽,使MF膜發生部分阻塞現象。氯化鐵混凝前處理對MF薄膜阻塞,則隨其混凝沉澱效果之提升而獲得減輕。
另外二氧化錳及其經混凝前處理後對不同材質薄膜阻塞之差異,主要是由於界達電位不同所造成之靜電排斥力或吸引力大小不同,未經混凝之二氧化錳對PES膜之靜電排斥力較小,故阻塞較嚴重;其經明礬混凝後對CA膜之靜電吸引力較大,故對CA膜之阻塞較嚴重。至於UF過濾部分,則未發現阻塞現象,可能因膠羽大小遠大於薄膜孔洞大小所致。

Nowadays, over 65 % of the source water for public water supply in Taiwan comes from reservoirs. However, some of the reservoirs are eutrophic. Therefore, the water works have encountered problems with source water containing excessive amount of algae cells, organics, and dissolved manganese.
Low pressure membranes (MF/UF) have high removal efficiency for algae, pathogenic protozoa, such as Giardia and Cryptosporidia, and turbidity. They also have the advantages of small footprint and easy for adapting automatic control. However, fouling control is the major factor for the success of a membrane process. Pre-coagulation could control the fouling caused by hydrophobic, macromolecular organics, such as humic substances. However, it usually has poor efficiency for low molecular, hydrophilic organic removal. Potassium permanganate (KMnO4) have high removal rate for dissolved Fe and Mn and also could promote the aggregation of algae cells. It also could remove low molecular hydrophilic organic by adsorption on the MnO2(S), the reduction products of KMnO4. Therefore, the MF/UF membrane with KMnO4 and coagulation pretreatment can be an efficient process for treating eutrophic source water. It also has the potential to be developed into a compact package unit for small scale water supply in remote area.
However, the effect of MnO2(S) on membrane fouling is not clear at this moment. Therefore, this research carried out experiments to study the fouling phenomena caused by MnO2(S) and the floc formed after coagulated by Al or Fe based inorganic coagulants. Several low pressure membranes with various materials and pore size were tested.
The results show that alum, under adequate dosage, could effectively remove MnO2 colloid; however, efficiency decreased at higher dosage, probably due to restabilization. Ferric chloride was effective for MnO2 coagulation, and efficiency raised with increasing dosage. For MF/UF membrane filtration, the results show that direct filtration of MnO2 suspension through MF caused severe fouling. This is probably due to pore blocking or constriction, as the size of MnO2 colloid is smaller than or close to the MF pore size.
Pre-coagulation by either alum or FeCl3 could reduce the rate of flux decline of MF membrane filtration of MnO2(s) suspension. However, the coagulant dosage required may be different from that predicted by jar test, based on turbidity removal. The optimum coagulant dosage required for MF membrane pretreatment may be affected by the property of the floc formed, which varied with the colloid destabilization mechanism. For example, when alum was used as coagulant, the colloid destabilization mechanism under dosage at 1 and 10 mg/L as Al were adsorption and charge neutralization and sweep coagulation, respectively. As adsorption and charge neutralization formed cake layer with lower specific resistance than that from sweep coagulation, the former caused much slower flux decline than the latter.
The variations of fouling phenomena between different membrane materials were mainly affected by the electrostatic interactions between the MnO2 floc and the membrane surface. The electrostatic repulsion between MnO2(s) and PES membrane was relatively weak, hence it resulted in more significant fouling. However, the electrostatic attraction between CA membrane and alum-coagulated MnO2(s) was stronger and, therefore, more significant the fouling was.
For UF filtration, no matter the influents were raw MnO2 suspension or the suspensions after coagulation, there was no flux decline. This probably is due to the small pore size of UF membrane, therefore porous cake layer was formed on membrane surface.

摘要 I
Abstract III
誌謝 V
目錄 VIII
圖目錄 X
表目錄 XIII
第一章 前言 1
1-1 研究源起 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 薄膜處理程序 5
2-1-1 薄膜型態 6
2-1-2 薄膜材質 8
2-1-3 薄膜過濾方式及流動狀態 10
2-1-4 薄膜過濾與阻塞機制 11
2-2 混凝 15
2-2-1 混凝前處理對薄膜阻塞之影響 16
2-2-2 混凝前處理對薄膜阻塞之改善 17
2-2-3 混凝前處理對薄膜效能之負面影響 19
2-2-4 混凝劑量與操作條件對薄膜效能之影響 20
2-3 高錳酸鉀之應用 22
2-4 二氧化錳之型態與特性 23
2-4-1 二氧化錳之吸附特性 25
2-4-2 合成二氧化錳之型態及生成途徑 26
第三章 實驗程序與方法 29
3-1 實驗流程 29
3-2 高錳酸鉀溶液之製備 29
3-3 二氧化錳懸浮液之配製 30
3-4 混凝瓶杯試驗 31
3-5 薄膜過濾試驗 31
3-6 水質分析 34
3-6-1 pH值 34
3-6-2 濁度 34
3-6-3 UV418吸光值 35
3-6-4 水中顆粒數之測定 35
3-6-5 界達電位之量測 36
3-7 二氧化錳之XRD晶相分析 38
第四章 結果與討論 41
4-1 二氧化錳懸浮液及其特性 41
4-2 二氧化錳之XRD晶體鑑定 41
4-3 混凝瓶杯試驗 43
4-3-1 殘餘濁度變化及二氧化錳去除率 43
4-3-2 界達電位變化 45
4-3-3 pH值變化 46
4-3-4 混凝劑量選擇 47
4-4 UF薄膜過濾試驗結果 48
4-5 MF薄膜過濾試驗結果 50
4-5-1 0.2 µm CA薄膜 50
4-5-1-1 以明礬做混凝前處理 50
4-5-1-2 以氯化鐵做混凝前處理 57
4-5-2 5 µm CA薄膜 63
4-5-3 0.2 µm PES薄膜 64
4-5-3-1 以明礬做混凝前處理 64
4-5-3-2 以氯化鐵做混凝前處理 67
4-5-4 不同材質薄膜之過濾結果比較 71
4-5-5 不同混凝劑對薄膜阻塞之結果比較 78
第五章 結論與建議 81
5-1 結論 81
5-2 建議 82
參考文獻 83
附錄A 檢量線 90
附錄B 殘餘二氧化錳之原始數據 91
Al-Degs, Y., Khraisheh, M. A. M. & Tutunji, M. F. (2001) Sorption of lead ions on diatomite and manganese oxides modified diatomite. Water Research, 35, 3724-3728.
Al-hadidi, A. M. M. (2011) Limitations, improvements, alternatives for the silt density index. Ph. D. disseration, University of Twente.
Amirtharajah, A. & Mills, K. M. (1982) Rapid-Mix Design for Mechanisms of Alum Coagulation. Journal American Water Works Association, 74, 210-216.
Ando, A., Miwa, M., Kajino, M. & Tatsumi, S. (1992) Removal of Musty-Odorous Compounds in Water and Retained in Algal Cells through Water-Purification Processes. Water Science and Technology, 25, 299-306.
Anselme, C. & Jacob, E. P. (1996) Ultrafiltration. J. Mallevaille, P. E. Odendaal & M. R. Wiesner, Water treatment membrane processes. American Water Works Association Research Foundation. Lyonnaise des Eaux. Water Research Commission of South Africa. McGraw-Hill, New York.
AWWA (2011) Water Quality & Treatment: A Handbook on Drinking Water. 6th ed., J. K. Edzwald, Editor. McGraw-Hill, New York, pp. 11.33~11.34.
Belfort, G. & Altena, F. W. (1983) Toward an Inductive Understanding of Membrane Fouling. Desalination, 47, 105-127.
Carroll, T., King, S., Gray, S. R., Bolto, B. A. & Booker, N. A. (2000) The fouling of microfiltration membranes by NOM after coagulation treatment. Water Research, 34, 2861-2868.
Chen, J. J. & Yeh, H. H. (2005) The mechanisms of potassium permanganate on algae removal. Water Research, 39, 4420-4428.
Cheryan, M. (1998) Ultrafiltration and Microfiltration Handbook, P. T. P. Lancaster.
Choi, K. Y. J. & Dempsey, B. A. (2004) In-line coagulation with low-pressure membrane filtration. Water Research, 38, 4271-4281.
Colthurst, J. M. & Singer, P. C. (1982) Removing Trihalomethane Precursor by Permanganate Oxidation and Manganese Dioxide Adsorption. Journal AWWA, 74, 78-83.
Dong, B. Z., Chen, Y., Gao, N. Y. & Fan, J. C. (2007) Effect of coagulation pretreatment on the fouling of ultrafiltration membrane. Journal of Environmental Sciences-China, 19, 278-283.
Driehaus, W., Seith, R. & Jekel, M. (1995) Oxidation of arsenate(III) with manganese oxides in water treatment. Water Research, 29, 297-305.
Eary, L. E. & Rai, D. (1987) Kinetics of Chromium(Iii) Oxidation to Chromium(Vi) by Reaction with Manganese-Dioxide. Environ Sci Technol, 21, 1187-1193.
Fiksdal, L. & Leiknes, T. (2006) The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water. Journal of Membrane Science, 279, 364-371.
Gao, W., Liang, H., Ma, J., Han, M., Chen, Z. L., Han, Z. S. & Li, G. B. (2011) Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272, 1-8.
Hasson, D., Sutzkover-Gutman, I. & Semiat, R. (2010) Humic substances fouling in ultrafiltration processes. Desalination, 261, 218-231.
Hermia, J. (1982) Constant pressure blocking filtration laws-Application to power-law non-Newtonian fluids. Transactions of the Institution of Chemical Engineers, 60, 183-187.
Howe, K. J., Clark & M.M. (2002) Coagulant pretreatment for membrane filtration, A. R. F. a. A. W. W. Association. West Quincy Avenue,Denver,CO, USA,
Huang, H., Schwab, K. & Jacangelo, J. G. (2009) Pretreatment for Low Pressure Membranes in Water Treatment: A Review. Environ Sci Technol, 43, 3011-3019.
Jacangelo, J. G., Adham, S. S. & Laine, J. M. (1995) Mechanism of Cryptosporidium, Giardia, and Ms2 Virus Removal by Mf and Uf. Journal American Water Works Association, 87, 107-121.
Jacangelo, J. G., Huang, H. & Schwab, K. (2009) Pretreatment for Low Pressure Membranes in Water Treatment: A Review. Environmental Science & Technology, 43, 3011-3019.
Jacangelo, J. G., Trussell, R. R. & Watson, M. (1997) Role of membrane technology in drinking water treatment in the United States. Desalination, 113, 119-127.
Jack, A. M. & Clark, M. M. (1998) Using PAC-UF to treat a low-quality surface water. Journal American Water Works Association, 90, 83-95.
Jang, N. Y., Watanabe, Y. & Minegishi, S. (2005) Performance of ultrafiltration membrane process combined with coagulaton/sedimentation. Water Science and Technology, 51, 209-219.
Johnson, P. N. & Amirtharajah, A. (1983) Ferric-Chloride and Alum as Single and Dual Coagulants. Journal American Water Works Association, 75, 232-239.
Jucker, C. & Clark, M. M. (1994) Adsorption of Aquatic Humic Substances on Hydrophobic Ultrafiltration Membranes. Journal of Membrane Science, 97, 37-52.
Judd, S. J. & Hillis, P. (2001) Optimisation of combined coagulation and microfiltration for water treatment. Water Research, 35, 2895-2904.
Kabsch-Korbutowicz, M. (2005) Effect of Al coagulant type on natural organic matter removal efficiency in coagulation/ultrafiltration process. Desalination, 185, 327-333.
Karimi, A. A., Vickers, J. C. & Harasick, R. F. (1999) Microfiltration goes Hollywood: the Los Angeles experience. Journal American Water Works Association, 91, 90-103.
Kimura, K., Hane, Y. & Watanabe, Y. (2005) Effect of pre-coagulation on mitigating irreversible fouling during ultrafiltration of a surface water. Water Science and Technology, 51, 93-100.
Konno, H. (1993) Settling and Coagulation of Slender Type Diatoms. Water Science and Technology, 27, 231-240.
Kwon, Y.-N. & Leckie, J. O. (2006) Hypochlorite degradation of crosslinked polyamide membranes: I. Changes in chemical/morphological properties. Journal of Membrane Science, 283, 21-26.
Lahoussineturcaud, V., Wiesner, M. R., Bottero, J. Y. & Mallevialle, J. (1990) Coagulation Pretreatment for Ultrafiltration of a Surface-Water. Journal American Water Works Association, 82, 76-81.
Laine, J. M., Hagstrom, J. P., Clark, M. M. & Mallevialle, J. (1989) Effects of Ultrafiltration Membrane-Composition. Journal American Water Works Association, 81, 61-67.
Lee, J. D., Lee, S. H., Jo, M. H., Park, P. K., Lee, C. H. & Kwak, J. W. (2000) Effect of coagulation conditions on membrane filtration characteristics in coagulation-microfiltration process for water treatment. Environ Sci Technol, 34, 3780-3788.
Liang, H., Gao, W., Ma, J., Han, M., Chen, Z. L., Han, Z. S. & Li, G. B. (2011) Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination, 272, 1-8.
Liang, H., Gong, W. J., Chen, J. & Li, G. B. (2008) Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment. Desalination, 220, 267-272.
Liu, R. P., Liu, H. J., Qiang, Z. M., Qu, J. H., Li, G. B. & Wang, D. S. (2009) Effects of calcium ions on surface characteristics and adsorptive properties of hydrous manganese dioxide. J Colloid Interface Sci, 331, 275-280.
Liu, R. P., Yang, Y. L., Li, G. B., He, W. J. & Han, H. D. (2007) Adsorptive behaviors of humic acid onto freshly prepared hydrous manganese dioxides. Frontiers of Environmental Science & Engineering in China.
Ma, J., Graham, N. & Li, G. (1997) Effect of permanganate preoxidation in enhancing the coagulation of surface waters - Laboratory case studies. Journal of Water Supply Research and Technology-Aqua, 46, 1-10.
Ma, J., Li, G. B., Chen, Z. L., Xu, G. R. & Cai, G. Q. (2001) Enhanced coagulation of surface waters with high organic content by permanganate preoxidation. Water Science and Technology: Water Supply, 1, 51-61.
Mafirad, S., Mehrnia, M. R. & Sarrafzadeh, M. H. (2011) Effect of membrane characteristics on the performance of membrane bioreactors for oily wastewater treatment. Water Science and Technology, 64, 1154-1160.
McKenzie, R. M. (1971) The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine, 38, 493-502.
Mouchet, P. & Bonnelye, V. (1998) Solving algae problems: French expertise and world-wide applications. Journal of Water Services Research and Technology-Aqua, 47, 125-141.
Mulder, M. (1996) Basic Principle of Membrane Technology. 2nd ed., Kluwer Academic Publishers, Dordrecht, the Netherlands,
Murray, J. W. (1975) Interaction of Cobalt with Hydrous Manganese-Dioxide. Geochimica Et Cosmochimica Acta, 39, 635-647.
O'Melia, C. R., Huang, H. & Spinett, R. (2008) Direct-flow microfiltration of aquasols - I. Impacts of particle stabilities and size. Journal of Membrane Science, 314, 90-100.
Perez-Benito, J. F. (2002) Reduction of colloidal manganese dioxide by manganese(II). J Colloid Interface Sci, 248, 130-135.
Posselt, H. S., Anderson, F. J. & Weber, W. J. (1968) Cation sorption on colloidal hydrous manganese dioxide. Environ Sci Technol, 2, 1087-1093.
Qin, Q. D., Wang, Q. Q., Fu, D. F. & Ma, J. (2011) An efficient approach for Pb(II) and Cd(II) removal using manganese dioxide formed in situ. Chemical Engineering Journal, 172, 68-74.
Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonullu, T. & Stickney, B. (1998) Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. Journal of Contaminant Hydrology, 29, 205-224.
Schroth, M. H., Oostrom, M., Wietsma, T. W. & Istok, J. D. (2001) In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. Journal of Contaminant Hydrology, 50, 79-98.
Seol, Y. & Schwartz, F. W. (2000) Phase-transfer catalysis applied to the oxidation of nonaqueous phase trichloroethylene by potassium permanganate. Journal of Contaminant Hydrology, 44, 185-201.
Steynberg, M. C., Pieterse, A. J. H. & Geldenhuys, J. C. (1996) Improved coagulation and filtration of algae as a result of morphological and behavioural changes due to pre-oxidation. Journal of Water Supply Research and Technology-Aqua, 45, 292-298.
Stone, A. T. (1987) Reductive Dissolution of Manganese(Iii/Iv) Oxides by Substituted Phenols. Environ Sci Technol, 21, 979-988.
Swart, P., Maartens, A. & Jacobs, E. P. (1999) Feed-water pretreatment: methods to reduce membrane fouling by natural organic matter. Journal of Membrane Science, 163, 51-62.
The AWWA Subcommittee on Periodical Publications of the Membrane Process Committee (2008) Microfiltration and ultrafiltration membranes for drinking water. Journal American Water Works Association, 100, 84-97.
Ulrich, H. J. & Stone, A. T. (1989) The oxidation of chlorophenols adsorbed to manganese oxide surfaces. Environ Sci Technol, 23, 421-428.
Vela, M. C. V., Blanco, S. A., Garcia, J. L. & Rodriguez, E. B. (2008) Analysis of membrane pore blocking models applied to the ultrafiltration of PEG. Separation and Purification Technology, 62, 489-498.
Walker, H. W. & Lee, J. (2008) Mechanisms and factors influencing the removal of microcystin-LR by ultrafiltration membranes. Journal of Membrane Science, 320, 240-247.
Wang, J., Guan, J., Santiwong, S. R. & Waite, T. D. (2008) Characterization of floc size and structure under different monomer and polymer coagulants on microfiltration membrane fouling. Journal of Membrane Science, 321, 132-138.
Watanabe, Y., Bian, R., Tambo, N. & Ozawa, G. (1999) Removal of humic substances by UF and NF membrane systems. Water Science and Technology, 40, 121-129.
Weis, A., Bird, M. R., Nystrom, M. & Wright, C. (2005) The influence of morphology, hydrophobicity and charge upon the long-term performance of ultrafiltration membranes fouled with spent sulphite liquor. Desalination, 175, 73-85.
Yadav, K. (2009) Diagnosis of the Failure of Ultrafiltration Membranes Used in the Dairy Industry. Ph. D. disseration, University of Canterbury.
Yao, W. & Millero, F. J. (1996) Adsorption of Phosphate on Manganese Dioxide in Seawater. Environ Sci Technol, 30, 536-541.
Zhang, L. Z., Ma, J., Li, X. & Wang, S. T. (2009) Enhanced removal of organics by permanganate preoxidation using tannic acid as a model compound - Role of in situ formed manganese dioxide. Journal of Environmental Sciences-China, 21, 872-876.
Zhang, L. Z., Ma, J. & Yu, M. (2008) The microtopography of manganese dioxide formed in situ and its adsorptive properties for organic micropollutants. Solid State Sciences, 10, 148-153.
Zularisam, A. W., Ismail, A. F. & Salim, R. (2006) Behaviours of natural organic matter in membrane filtration for surface water treatment - a review. Desalination, 194, 211-231.
Zydney, A. L. & Pujar, N. S. (1998) Protein transport through porous membranes: effects of colloidal interactions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 138, 133-143.
經濟部水利署 (2006) 21世紀自來水事業發展自標與策略研究.

環保署 (2011) 民國100年環境水質監測年報
黃抒毓、沈珊米及羅家康 (2011),簡易自來水淨水模組開發暨驗証,自來水,第30 卷,第4 期,pp. 72~76
葉宣顯等 (2011) 「水庫底層水中有機物及臭味物質應急處理技術」台灣自來水公司委託專題研究計畫報告
葉宣顯等 (2001) 澄清湖高級淨水處理模型廠試研究(第二年)台灣省自來水公司委託專題研究計畫報告
陳振正,葉宣顯,曾怡禎 (2007) 高錳酸鉀前氧化劑處理優養化原水之研究 自來水(中華民國自來水協會會刊) 26:1:2-11

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊