|
Allhorn, M., Briceno, J. B., Baudino, L., Lood, C., Olsson, M. L., Izui, S., and Collin, M. (2010). The IgG-specific endoglycosidase EndoS inhibits both cellular and complement-mediated autoimmune hemolysis. Blood 115(24): 5080-5088.
Allhorn, M., Olsen, A. and Collin, M. (2008). EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity. BMC Microbiol 8: 3.
Anderson, N. L. and Anderson, N. G. (1998). Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19(11): 1853-61.
Becherelli, M., Manetti, A. G., Buccato, S., Viciani, E., Ciucchi, L., Mollica, G., Grandi, G. and Margarit, I. (2012). The ancillary protein 1 of Streptococcus pyogenes FCT-1 pili mediates cell adhesion and biofilm formation through heterophilic as well as homophilic interactions. Mol Microbiol 83(5): 1035-1047.
Bisno, A. L., Brito, M. O. and Collins, C. M. (2003). Molecular basis of group A streptococcal virulence. Lancet Infect Dis 3(4): 191-200.
Biswas, I., Drake, L. and Biswas, S. (2007). Regulation of gbpC expression in Streptococcus mutans. J Bacteriol 189(18): 6521-6531.
Boekhorst, J., Wels, M., Kleerebezem, M. and Siezen, R. J. (2006). The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 152(Pt 11): 3175-3183.
Bugrysheva, J., Froehlich, B. J., Freiberg, J. A. and Scott, J. R. (2011). Serine/threonine protein kinase Stk is required for virulence, stress response, and penicillin tolerance in Streptococcus pyogenes. Infect Immun 79(10): 4201-4209.
Carapetis, J. R., Steer, A. C., Mulholland, E. K., and Weber, M. (2005). The global burden of group A streptococcal diseases. Lancet Infect Dis 5(11): 685-694.
Chaussee, M. S., Sylva, G. L., Sturdevant, D. E., Smoot, L. M., Graham, M. R., Watson, R. O. and Musser, J. M. (2002). Rgg influences the expression of multiple regulatory loci to coregulate virulence factor expression in Streptococcus pyogenes. Infect Immun 70(2): 762-770.
Chiu, K. H., Chang, Y. H., Wu, Y. S., Lee, S. H. and Liao, P. C. (2011). Quantitative secretome analysis reveals that COL6A1 is a metastasis-associated protein using stacking gel-aided purification combined with iTRAQ labeling. J Proteome Res 10(3): 1110-1125.
Chuan, N. C., Zheng, P. X., Tsai, P. J., Chuang, W. J., Lin, Y. S., Liu, C. C. and Wu, J. J. (2012). Environmental pH changes, but not the LuxS signalling pathway, regulate SpeB expression in M1 group A streptococci. J Med Microbiol 61(1): 16-22.
Collin, M. and Olsén, A. (2001). EndoS, a novel secreted protein from Streptococcus pyogenes with endoglycosidase activity on human IgG. EMBO J 20(12): 3046-3055.
Cox, J. and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12): 1367-1372.
Cunningham, M. W. (2000). Pathogenesis of Group A Streptococcal Infections. Clin Microbiol Rev 13(3): 470-511.
Dalton, T. L. and Scott, J. R. (2004). CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes. J Bacteriol 186(12): 3928-3937.
Daniel, H. (2002). Genomics and proteomics: importance for the future of nutrition research. Br J Nutr 87(Suppl 2): S305-11.
Federle, M. (2012). Pathogenic streptococci speak, but what are they saying? Virulence 3(1): 92-94.
Gao, B. B., Stuart, L. and Feener, E. P. (2008). Label-free quantitative analysis of one-dimensional PAGE LC/MS/MS proteome: application on angiotensin II-stimulated smooth muscle cells secretome. Mol Cell Proteomics 7(12): 2399-409.
Gase, K., Ferretti, J. J., Primeaux, C. and McShan, M. W. (1999). Identification, cloning, and expression of the CAMP factor gene (cfa) of group A streptococci. Infect Immun 67(9): 4725-4731.
Hoe, N. P., Ireland, R. M., DeLeo, F. R., Gowen, B. B., Dorward, D. W., Voyich, J. M., Liu, M., Burns, E. H. Jr., Culnan, D. M., Bretscher, A. and Musser, J. M. (2002). Insight into the molecular basis of pathogen abundance: group A Streptococcus inhibitor of complement inhibits bacterial adherence and internalization into human cells. Proc Natl Acad Sci U S A 99(11): 7646-7651.
Hynes, W., Johnson, C. and Stokes, M. (2009). A single nucleotide mutation results in loss of enzymatic activity in the hyaluronate lyase gene of Streptococcus pyogenes. Microb Pathog 47(6): 308-313.
Hytonen, J., Haataja, S. and Finne, J. (2003). Streptococcus pyogenes glycoprotein-binding strepadhesin activity is mediated by a surface-associated carbohydrate-degrading enzyme, pullulanase. Infect Immun 71(2): 784-793.
Kimura, K. R., Nakata, M., Sumitomo, T., Kreikemeyer, B., Podbielski, A., Terao, Y. and Kawabata, S. (2012). Involvement of T6 pili in biofilm formation by serotype M6 Streptococcus pyogenes. J Bacteriol 194(4): 804-812.
Kunitomo, E., Terao, Y., Okamoto, S., Rikimaru, T., Hamada, S. and Kawabata, S. (2008). Molecular and biological characterization of histidine triad protein in group A streptococci. Microbes Infect 10(4): 414-423.
Lange, V., Malmström, J. A., Didion, J., King, N. L., Johansson, B. P., Schäfer, J., Rameseder, J., Wong, C. H., Deutsch, E. W., Brusniak, M. Y., Bühlmann, P., Björck, L., Domon, B. and Aebersold, R. (2008). Targeted quantitative analysis of Streptococcus pyogenes virulence factors by multiple reaction monitoring. Mol Cell Proteomics 7: 1489-1500.
Linke, C., Siemens, N., Oehmcke, S., Radjainia, M., Law, R. H., Whisstock, J. C., Baker, E. N. and Kreikemeyer, B. (2012). The extracellular protein factor Epf from Streptococcus pyogenes is a cell surface adhesin that binds to cells through an N-terminal domain containing a carbohydrate-binding module. J Biol Chem 287(45): 38178-38189.
Loughman, J. A. and Caparon, M. (2006). Regulation of SpeB in Streptococcus pyogenes by pH and NaCl: a model for in vivo gene expression. J Bacteriol 188(2): 399-408.
Ma, Y., Bryant, A. E., Salmi, D. B., Hayes-Schroer, S. M., McIndoo, E., Aldape, M. J. and Stevens, D. L. (2006). Identification and characterization of bicistronic speB and prsA gene expression in the group A Streptococcus. J Bacteriol 188(21): 7626-7634.
Manetti, A. G., Köller, T., Becherelli, M., Buccato, S., Kreikemeyer, B., Podbielski, A., Grandi, G. and Margarit, I. (2010). Environmental acidification drives S. pyogenes pilus expression and microcolony formation on epithelial cells in a FCT-dependent manner. PLoS One 5(11): e13864.
Neely, M. N., Lyon, W. R., Runft, D. L. and Caparon, M. (2003). Role of RopB in growth phase expression of the SpeB cysteine protease of Streptococcus pyogenes. J Bacteriol 185(17): 5166-5174.
Nyberg, P., Sakai, T., Cho, K. H., Caparon, M. G., Fässler, R. and Björck, L. (2004). Interactions with fibronectin attenuate the virulence of Streptococcus pyogenes. EMBO J 23(10): 2166-2174.
Ohara-Nemoto, Y., Sasaki, M., Kaneko, M., Nemoto, T. and Ota, M. (1994). Cysteine protease activity of streptococcal pyrogenic exotoxin B. Can J Microbiol 40(11): 930-936.
Olsen, R. J. and Musser, J. M. (2010). Molecular pathogenesis of necrotizing fasciitis. Annu Rev Pathol 5: 1-31.
Olsen, R. J., Shelburne, S. A. and Musser, J. M. (2009). Molecular mechanisms underlying group A streptococcal pathogenesis. Cell Microbiol 11(1): 1-12.
Port, G. C. and Freitag, N. E. (2007). Identification of novel Listeria monocytogenes secreted virulence factors following mutational activation of the central virulence regulator, PrfA. Infect Immun 75(12): 5886-5897.
Salim, K. Y., de Azavedo, J. C., Bast, D. J. and Cvitkovitch, D. G. (2007). Role for sagA and siaA in quorum sensing and iron regulation in Streptococcus pyogenes. Infect Immun 75(10): 5011-5017.
Shelburne, S. A. 3rd., Fang, H., Okorafor, N., Sumby, P., Sitkiewicz, I., Keith, D., Patel, P., Austin, C., Graviss, E. A., Musser, J. M. and Chow, D. C. (2007). MalE of group A Streptococcus participates in the rapid transport of maltotriose and longer maltodextrins. J Bacteriol 189(7): 2610-2617.
Shelburne, S. A. 3rd., Keith, D. B., Davenport, M. T., Beres, S. B., Carroll, R. K. and Musser, J. M. (2009). Contribution of AmyA, an extracellular alpha-glucan degrading enzyme, to group A streptococcal host-pathogen interaction. Mol Microbiol 74(1): 159-174.
Simmen, H. P., Battaglia, H., Giovanoli, P. and Blaser, J. (1994). Analysis of pH, pO2 and pCO2 in drainage fluid allows for rapid detection of infectious complications during the follow-up period after abdominal surgery. Infection 22(6): 14-17.
Starr, C. R. and Engleberg, N. C. (2006). Role of hyaluronidase in subcutaneous spread and growth of group A streptococcus. Infect Immun 74(1): 40-48.
Sumby, P., Barbian, K. D., Gardner, D. J., Whitney, A. R., Welty, D. M., Long, R. D., Bailey, J. R., Parnell, M. J., Hoe, N. P., Adams, G. G., Deleo, F. R. and Musser, J. M. (2005). Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc Natl Acad Sci U S A 102(5): 1679-1684.
Tsai, P. J., Chen, Y. H., Hsueh, C. H., Hsieh, H. C., Liu, Y. H., Wu, J. J. and Tsou C. C. (2006). Streptococcus pyogenes induces epithelial inflammatory responses through NF-kappaB/MAPK signaling pathways. Microbes Infect 8(6): 1440-1449.
von Pawel-Rammingen, U. and Bjorck, L. (2003). IdeS and SpeB: immunoglobulin-degrading cysteine proteinases of Streptococcus pyogenes. Curr Opin Microbiol 6(1): 50-55.
Wu, W. W. Wang, G., Baek, S. J. and Shen, R. F. (2006). Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5(3): 651-8.
Zhang, M. J., Zhao, F., Xiao, D., Gu, Y. X., Meng, F. L., He, L. H. and Zhang, J. Z. (2009). Comparative proteomic analysis of passaged Helicobacter pylori. J Basic Microbiol 49(5): 482-490.
|