|
1.Barford, D., A.K. Das, and M.P. Egloff, The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Annu Rev Biophys Biomol Struct, 1998. 27: p. 133-64. 2.Manning, G., et al., The protein kinase complement of the human genome. Science, 2002. 298(5600): p. 1912-34. 3.Sasaki, K., et al., Identification of members of the protein phosphatase 1 gene family in the rat and enhanced expression of protein phosphatase 1 alpha gene in rat hepatocellular carcinomas. Jpn J Cancer Res, 1990. 81(12): p. 1272-80. 4.Stone, S.R., J. Hofsteenge, and B.A. Hemmings, Molecular cloning of cDNAs encoding two isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry, 1987. 26(23): p. 7215-20. 5.Sents, W., et al., The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity. FEBS J, 2013. 280(2): p. 644-61. 6.Sablina, A.A. and W.C. Hahn, The role of PP2A A subunits in tumor suppression. Cell Adh Migr, 2007. 1(3): p. 140-1. 7.Eichhorn, P.J., M.P. Creyghton, and R. Bernards, Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta, 2009. 1795(1): p. 1-15. 8.Kalev, P. and A.A. Sablina, Protein phosphatase 2A as a potential target for anticancer therapy. Anticancer Agents Med Chem, 2011. 11(1): p. 38-46. 9.Perrotti, D. and P. Neviani, Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol, 2013. 14(6): p. e229-38. 10.Yang, J. and C. Phiel, Functions of B56-containing PP2As in major developmental and cancer signaling pathways. Life Sci, 2010. 87(23-26): p. 659-66. 11.Shi, Y., Serine/threonine phosphatases: mechanism through structure. Cell, 2009. 139(3): p. 468-84. 12.Mumby, M., PP2A: unveiling a reluctant tumor suppressor. Cell, 2007. 130(1): p. 21-4. 13.Crispin, J.C., Dysregulation of the serine/threonine phosphatase PP2A contributes to autoimmunity. Arthritis Research & Therapy, 2012. 14. 14.Janssens, V., S. Longin, and J. Goris, PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail). Trends in Biochemical Sciences, 2008. 33(3): p. 113-121. 15.Kong, M., et al., Alpha4 is an essential regulator of PP2A phosphatase activity. Mol Cell, 2009. 36(1): p. 51-60. 16.Yang, J., et al., The structure of Tap42/alpha 4 reveals a tetratricopeptide repeat-like fold and provides insights into PP2A regulation. Biochemistry, 2007. 46(30): p. 8807-8815. 17.Jiang, L., et al., Structural basis of protein phosphatase 2A stable latency. Nat Commun, 2013. 4: p. 1699. 18.Aranda-Orgilles, B., et al., Protein phosphatase 2A (PP2A)-specific ubiquitin ligase MID1 is a sequence-dependent regulator of translation efficiency controlling 3-phosphoinositide-dependent protein kinase-1 (PDPK-1). J Biol Chem, 2011. 286(46): p. 39945-57. 19.Aranda-Orgilles, B., et al., Active transport of the ubiquitin ligase MID1 along the microtubules is regulated by protein phosphatase 2A. PLoS One, 2008. 3(10): p. e3507. 20.Liu, E., et al., Control of mTORC1 signaling by the Opitz syndrome protein MID1. Proc Natl Acad Sci U S A, 2011. 108(21): p. 8680-5. 21.Liu, J., et al., Phosphorylation and microtubule association of the Opitz syndrome protein mid-1 is regulated by protein phosphatase 2A via binding to the regulatory subunit alpha 4. Proc Natl Acad Sci U S A, 2001. 98(12): p. 6650-5. 22.Watkins, G.R., et al., Monoubiquitination promotes calpain cleavage of the protein phosphatase 2A (PP2A) regulatory subunit alpha4, altering PP2A stability and microtubule-associated protein phosphorylation. J Biol Chem, 2012. 287(29): p. 24207-15. 23.Du, H., et al., The MID1 E3 ligase catalyzes the polyubiquitination of Alpha4, a regulatory subunit of Protein Phosphatase 2A (PP2A): Novel insights into MID1-mediated regulation of PP2A. J Biol Chem, 2013. 24.Jacinto, E., et al., TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway. Mol Cell, 2001. 8(5): p. 1017-26. 25.Smetana, J.H. and N.I. Zanchin, Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, alpha4 and the mammalian ortholog of yeast Tip41 (TIPRL). FEBS J, 2007. 274(22): p. 5891-904. 26.McConnell, J.L., et al., Identification of a PP2A-interacting protein that functions as a negative regulator of phosphatase activity in the ATM/ATR signaling pathway. Oncogene, 2007. 26(41): p. 6021-30. 27.Ohad, N. and S. Yalovsky, Utilizing bimolecular fluorescence complementation (BiFC) to assay protein-protein interaction in plants. Methods Mol Biol, 2010. 655: p. 347-58. 28.Kerppola, T.K., Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys, 2008. 37: p. 465-87. 29.Kodama, Y. and C.D. Hu, Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques, 2012. 53(5): p. 285-98. 30.Hiatt, S.M., et al., Bimolecular fluorescence complementation (BiFC) analysis of protein interactions in Caenorhabditis elegans. Methods, 2008. 45(3): p. 185-91. 31.Hollender, C.A. and Z. Liu, Bimolecular fluorescence complementation (BiFC) assay for protein-protein interaction in onion cells using the helios gene gun. J Vis Exp, 2010(40). 32.Hu, C.D., A.V. Grinberg, and T.K. Kerppola, Visualization of protein interactions in living cells using bimolecular fluorescence complementation (BiFC) analysis. Curr Protoc Cell Biol, 2006. Chapter 21: p. Unit 21 3. 33.Kerppola, T.K., Design and implementation of bimolecular fluorescence complementation (BiFC) assays for the visualization of protein interactions in living cells. Nat Protoc, 2006. 1(3): p. 1278-86. 34.Schutze, K., K. Harter, and C. Chaban, Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods Mol Biol, 2009. 479: p. 189-202. 35.Benz, C., et al., Protein-protein interaction analysis in single microfluidic droplets using FRET and fluorescence lifetime detection. Lab Chip, 2013. 13(14): p. 2808-14. 36.Song, Y., et al., Protein interaction affinity determination by quantitative FRET technology. Biotechnol Bioeng, 2012. 109(11): p. 2875-83. 37.You, X., et al., Intracellular protein interaction mapping with FRET hybrids. Proc Natl Acad Sci U S A, 2006. 103(49): p. 18458-63. 38.Shyu, Y.J., C.D. Suarez, and C.D. Hu, Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nat Protoc, 2008. 3(11): p. 1693-702. 39.Douglas C. Youvan, C.M.S., Edward J. Bylina, and M.R.D. William J. Coleman, and Mary M. Yang*, (document3.pdf). Biotechnology 1997 40.LeNoue-Newton, M., et al., The E3 ubiquitin ligase- and protein phosphatase 2A (PP2A)-binding domains of the Alpha4 protein are both required for Alpha4 to inhibit PP2A degradation. J Biol Chem, 2011. 286(20): p. 17665-71. 41.Kerppola, T.K., Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods Cell Biol, 2008. 85: p. 431-70. 42.Schweiger, S., et al., The Opitz syndrome gene product, MID1, associates with microtubules. Proceedings of the National Academy of Sciences of the United States of America, 1999. 96(6): p. 2794-2799. 43.Trockenbacher, A., et al., MID1, mutated in Opitz syndrome, encodes an ubiquitin ligase that targets phosphatase 2A for degradation. Nat Genet, 2001. 29(3): p. 287-94. 44.Goudreault, M., et al., A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics, 2009. 8(1): p. 157-71. 45.Gingras, A.C., et al., A novel, evolutionarily conserved protein phosphatase complex involved in cisplatin sensitivity. Mol Cell Proteomics, 2005. 4(11): p. 1725-40. 46.Glatter, T., et al., An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol, 2009. 5: p. 237. 47.Chen, J., R.T. Peterson, and S.L. Schreiber, Alpha 4 associates with protein phosphatases 2A, 4, and 6. Biochem Biophys Res Commun, 1998. 247(3): p. 827-32. 48.Chung, H., et al., Mutation of Tyr307 and Leu309 in the protein phosphatase 2A catalytic subunit favors association with the alpha 4 subunit which promotes dephosphorylation of elongation factor-2. Biochemistry, 1999. 38(32): p. 10371-6. 49.McConnell, J.L., et al., Alpha4 is a ubiquitin-binding protein that regulates protein serine/threonine phosphatase 2A ubiquitination. Biochemistry, 2010. 49(8): p. 1713-8. 50.Wang, J., et al., Toward an understanding of the protein interaction network of the human liver. Mol Syst Biol, 2011. 7: p. 536. 51.Du, H. and M.A. Massiah, NMR studies of the C-terminus of alpha4 reveal possible mechanism of its interaction with MID1 and protein phosphatase 2A. PLoS One, 2011. 6(12): p. e28877. 52.Short, K.M., et al., MID1 and MID2 homo- and heterodimerise to tether the rapamycin-sensitive PP2A regulatory subunit, alpha 4, to microtubules: implications for the clinical variability of X-linked Opitz GBBB syndrome and other developmental disorders. BMC Cell Biol, 2002. 3: p. 1.
|