跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 13:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴岑芳
研究生(外文):Tsen-FangDai
論文名稱:溶膠凝膠法製備之氧化鋅次微米球的光致螢光與隨機雷射發光
論文名稱(外文):Photoluminescence and optically pumped random lasing of ZnO submicron spheres prepared by sol-gel method
指導教授:徐旭政
指導教授(外文):Hsu-cheng Hsu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:61
中文關鍵詞:氧化鋅光致螢光隨機雷射電子能譜儀
外文關鍵詞:ZnOphotoluminescencerandom lasingX-ray photoelectron spectroscopy
相關次數:
  • 被引用被引用:6
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅是一個寬能隙的半導體材料(3.37eV),而且由於它擁有大的激子束縛能(60meV),使之能夠穩定的存在於室溫當中,所以氧化鋅有絕對的潛力去發展藍光雷射和發光二極體。因此,增強氧化鋅近能帶發光和改善其發光效率是當前研究氧化鋅的重要議題。
在實驗當中,我們藉由溶膠凝膠法製備均一大小的氧化鋅球體,其球體尺寸為次微米級且由氧化鋅的奈米粒子團簇而成,接著我們將氧化鋅球體以不同的溫度進行退火。藉由掃描式電子顯微鏡和X光繞射儀的測量結果,我們發現在不同的退火條件下氧化鋅球體的形貌與晶體結構會產生很大的變化。進而,我們研究其光學激發下的發光特性和產生的雷射行為,得知氧化鋅球體在退火之後其光學特性也獲得了大幅的改善。而且,我們也由X射線光電子能譜的量測發現,經由退火過程可以移除大部分在氧化鋅球體表面的OH鍵結,而OH鍵結對於表面陷阱能態的產生扮演重要的角色。由此可見,經由高溫退火的氧化鋅球體確實擁有較卓越的光學特性。

Zinc oxide (ZnO) is a wide band gap semiconductor (3.37 eV) and its large exciton binding energy of 60 meV makes free excitons stable even at room temperature. Thus it has been suggested that ZnO has enormous potential for developing blue lasers and light emitting diodes. Therefore, the enhancement of the band gap emission and the improvement of the luminescence efficiency have become the vital issues in the research of ZnO.
We fabricated the monodisperse ZnO submicron spheres consisting of aggregated nanoparticles by sol-gel process, and annealed them at the different temperatures. According to the results, we found out that the various annealed temperature would influence the morphologies as well as the crystal structures of the ZnO spheres by scanning electron microscope (SEM) and X-ray diffraction measurement (XRD). We investigated both luminescence characteristics and lasing action by optical pumping. The optical properties of the ZnO spheres obtained great improvement via thermal treatment. Moreover, Using X-ray photoelectron spectroscopy (XPS), we found that the annealing process can mostly remove the OH bonds at the surface, which may play important roles for surface trapped state. As a result, the superior optical properties of high-annealing ZnO mainly could be achieved.

Abstract (in Chinese) I
Abstract (in English) II
Acknowledgements III
Contents IV
List of Tables VII
List of Figures VIII

1 Introduction 1
1.1 Preface 1
1.2 Motivation 4
2 Background Theory 5
2.1 Characteristics of Zinc Oxide 5
2.2 Material Properties of Nanostructure 7
2.2.1 Quantum Confinement Effect 7
2.2.2 Surface and Interface Effect 7
2.3 Optical Properties of Zinc Oxide 7
2.3.1 Spontaneous Emission 7
2.3.1.1 UV Emission 8
2.3.1.2 Defect Emissions 12
2.3.2 Stimulated Emission 15
2.3.2.1 Nanostructures as Cavities 15
2.3.2.2 Random Lasing 16
3 Experiment Process and Measurement Instrument 18
3.1 Experiment Process 18
3.1.1 Substrate Cleaning 18
3.1.2 Synthesis of Zinc Oxide Spheres by Sol-Gol Growth 18
3.1.3 Post Treatment 20
3.2 Measurement Instrument 22
3.2.1 X-ray Diffraction (XRD) 22
3.2.2 Field-Emission Scanning Electron Microscopy (FE-SEM)22
3.2.3 Photoluminescence (PL) 23
3.2.4 X-ray photoelectron Spectroscopy (XPS) 26
4 Experiment Results and Discussions 28
4.1 XRD and SEM Analysis 28
4.2 Continuous-wave (CW) PL Analysis 31
4.2.1 PL at Roomtemperature (RT) 31
4.2.2 Temperature-dependent PL 33
4.3 Pulsed laser pumped PL Analysis 41
4.4 XPS Analysis 48
5 Conclusion 52
Reference 53


1.M. A. Thomas, J. C. Armstrong, and J. Cui, New approach toward transparent and conductive ZnO by atomic layer deposition: Hydrogen plasma doping, Journal of Vacuum Science and Technology A 31, 01A130 (2013)
2.Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, Polydisperse aggregates of ZnO nanocrystallites: a method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,Advanced Functional Materials 18, 1654-1660 (2008)
3.H. J. Park, K. H. Lee, B. Kumar, K. S. Shin, S. W. Jeong, and S. W. Kim, Inverted organic solar cells with ZnO thin films prepared by sol-gel method, Journal of Nanoelectronics and Optoelectronics 5, 1-4 (2010)
4.H. M. Cheng and W. F. Hsieh, High-efficiency metal-free organic-dye-sensitized solar cells with hierarchical ZnO photoelectrode, Energy and Environmental Science 3, 442-447 (2010)
5.Y. S. Chiu and C. T. Lee, pH sensor investigation of various-length photoelectrochemical passivated ZnO nanorod arrays , Journal of The Electrochemical Society 158 (9) J282-J285 (2011)
6.X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Single-nanowire electrically driven lasers, Nature 421, 241-245 (2003)
7.A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma and M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nature Materials 4, 42-46 (2005)
8.M. T. Chen, M. P. Lu, Y. J. Wu, J. Song, C. Y. Lee, M. Y. Lu, Y. C. Chang, L J. Chou, Z. L. Wang, and L. J. Chen, Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays, Nano Letters 10, 4387–4393 (2010)
9.C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt, Room-temperature stimulated emission of ZnO: alternatives to excitonic lasing, Physical Review B 75, 115203 (2007)
10.S. Chu, Guoping Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, and J. Liu, Electrically pumped waveguide lasing from ZnO nanowires, Nature Nanotechnology 6 (2011)
11.J. Dai, C. X. Xu, and X. W. Sun, ZnO-microrod/p-GaN heterostructured whispering-gallery-mode microlaser diodes , Advanced Materials 23, 4115–4119 (2011)
12.M. K. Lee, C. L. Ho, C. C. Lin, N. R. Cheng, M. H. Houng, Y. K. Chien, and C. F.Yen, Light extraction efficiency enhancement of GaN blue LED with ZnO nanotips prepared by aqueous solution deposition, Journal of the Electrochemical Society 158 (5) D286-D289 (2011)
13.X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm, Nano Letters 8(4), 1219-1223 (2008)
14.T. Omata, Y. Tani, S. Kobayashi, K. Takahashi, A. Miyanaga, Y. Maeda, and S. Otsuka-Yao-Matsuo, Ultraviolet electroluminescence from colloidal ZnO quantum dots in an allinorganic multilayer light-emitting device, Applied Physics Letters 100, 061104 (2012)
15.Y. Zhao, F. Qin, Y. Bai, Z. Ju, Y. Zhao, X. Zhang, S. Li, D. Zhang, J. Bian,and Y. Li, Low temperature synthesis of GaN films on ITO substrates by ECR-PEMOCVD, Vacuum 92, 77-80 (2013)
16.S. H. Jung, K. M. Song, H. H. Park, H. B. Shin, H. K. Kang, J. Lee, and C. G. Ko, Photoluminescence enhancement of GaN-based LEDs structure with nano-grayscale multiple quantum wells using electron beam lithography , Microelectronic Engineering 105, 77-80 (2013)
17.X. Y. Liu, C. X. Shan, S. P. Wang, Z. Z. Zhang, and D. Z. Shen, Electrically pumped random lasers fabricated from ZnO nanowire arrays, Nanoscale 4, 2843 (2012)
18.H. Cao and Y. G. Zhao, Random Laser Action in Semiconductor Powder, Physical Review Letters 82(11), 2278 (1999)
19.X. H. Wu, A. Yamilov, H. Noh, and H. Cao, Random lasing in closely packed resonant scatterers, Journal of the Optical Society of America B 21(1), 159 (2004)
20.J.K. Dangbe'gnon, K. Talla, and J.R. Botha, Effect of the annealing environment on the optical properties of ZnO/GaAs grown by MOCVD, Journal of Luminescence 131, 2457–2462 (2011)
21.Y. Zhang, Z. Duan, R. Li, C. J. Ku, P. I Reyes, A. Ashrafi, J. Zhong, and Y. Lu, Vertically integrated ZnO-Based 1D1R structure for resistive switching, Journal Physics D: Applied Physics 46, 145101 (2013)
22.A. Souissi, N. Haneche, A. Meftah, C. Sartel, C. Vilar, A. Lusson, P. Galtier, V. Sallet, and M.Oueslati, Structural and optical characterisations of nitrogen doped ZnO nanowires grown by MOCVD, Journal of Luminescence 136, 265–269 (2013)
23.H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction, Journal of Physical Chemistry C 112, 20546–20548 (2008)
24.L. Li, J. Qiu, B. Weng, Z. Yuan, X. Li, X. Gan, I. R. Sellers, and Z. Shi, Measurement of the valence band-offset in a PbSe/ZnO heterojunction by x-ray photoelectron spectroscopy, Applied Physics Letters 101, 261601 (2012)
25.P. Mele, S. Saini, H. Honda, K. Matsumoto, K. Miyazaki, H. Hagino, and A. Ichinose, Effect of substrate on thermoelectric properties of Al-doped ZnO thin films , Applied Physics Letters 102, 253903 (2013)
26.A. S. Gadallah, K. Nomenyo, C. Couteau, D. J. Rogers, and G. Lérondel, Stimulated emission from ZnO thin films with high optical gain and low loss , Applied Physics Letters 102, 171105 (2013)
27.A. Bikowski, T. Welzel, and K. Ellmer, The impact of negative oxygen ion bombardment on electronic and structural properties of magnetron sputtered ZnO:Al films , Applied Physics Letters 102, 242106 (2013)
28.K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh, Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method, Chemical Physics Letters 409, 208-211 (2005)
29.A. Chernikov, S. Horst, T. Waitz, M. Tiemann, and S. Chatterjee, Photoluminescence Properties of Ordered Mesoporous ZnO, The Journal of Physical Chemistry C 115, 1375-1379 (2011)
30.H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, Surface related and intrinsic exciton recombination dynamics in ZnO nanoparticles synthesized by a sol-gel method, Applied Physics Letters 102, 013109 (2013)
31.I. Musa, F. Massuyeau, L. Cario, J. L. Duvail, S. Jobic, P. Deniard, and E. Faulques, Temperature and size dependence of time-resolved exciton recombination in ZnO quantum dots, Applied Physics Letters 99, 243107 (2011)
32.A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, and J. F. Donegan, Aqueous synthesis of thiol-capped CdTe nanocrystals: state-of-the-art, The Journal of Physical Chemistry C 111, 14628-14637 (2007)
33.C. Klingshirn, ZnO: Material, Physics and Applications, ChemPhysChem 8, 782-803 (2007)
34.Aleksandra B. Djurisˇic, and Yu Hang Leung, Optical Properties of ZnO Nanostructures, small 2( 8-9), 944-961 (2006)
35.C. F. Klingshirn, Semiconductor Optics, Springer (2007)
36.Mark. Fox, Optical properties of solids, Oxford University Press (2010)
37.B. Yan, R. Chen, W. Zhou, J. Zhang, H. Sun, H. Gong, and T. Yu, Localized suppression of longitudinal-optical-phonon–excite coupling in bent ZnO nanowires, Nanotechnology 21, 445706 (2010)
38.M. R. Wagner, G. Callsen, J. S. Reparaz, J. H. Schulze, R. Kirste, M. Cobet, I. A. Ostapenko, S. Rodt, C. Nenstiel, M. Kaiser, and A. Hoffmann, Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers, Physical Review B 84, 035313 (2011)
39.C. C. Zheng, S. J. Xu, J. Q. Ning, Y. N. Chen, B. K. Li, J. N. Wang, and C. M. Che, Formation Dynamics of Excitons and Temporal Behaviors of Fano Resonance Due to the Exciton_Impurity_Phonon Configuration Interaction in ZnO, The Journal of Physical Chemistry A 116, 381–385 (2012)
40.J. W. Sun, V. Khranovskyy, M. Mexis, M. Eriksson, M. Syv¨ aj¨arvi, I. Tsiaoussis, G. R.Yazdi, H. Peyre, S. Juillaguet, J. Camassel, P. O. Holtz, P. Bergman, L. Hultman, and R.Yakimova, Comparative micro-photoluminescence investigation of ZnO hexagonal nanopillars and the seeding layer grown on 4H-SiC, Journal of Luminescence 132, 122-127 (2012)
41.A. Umar, and Y. B. Hahn, Ultraviolet-Emitting ZnO Nanostructures on Steel Alloy Substrates: Growth and Properties, Crystal Growth & Design 8 (8), 2741-2747 (2008)
42.S. H. Lee, J. S. Lee, W. B. Ko, J. I. Sohn, S. N. Cha, J. M. Kim, Y. J. Park, and J. P. Hong, Photoluminescence Analysis of Energy Level on Li-Doped ZnO Nanowires Grown by a Hydrothermal Method, Applied Physics Express 5, 095002 (2012)
43.R. Chen, Q. L. Ye, T. He, V. D. Ta, Y. Ying, Y. Y. Tay, T. Wu,.and H. Sun, Exciton Localization and Optical Properties Improvement in Nanocrystal-Embedded ZnO Core−Shell Nanowires, Nano Letters 13, 734-739 (2013)
44.J. P. Richters, T. Voss., D. SKim, R. Scholz, and M. Zacharias, Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires, Nanotechnology 19, 305202 (2008)
45.D. Sentosa, B. Liu, L. M. Wong, Y. V. Lim, T. I. Wong, Y. L. Foo, H. D. Sun, and S. J. Wang, Temperature dependent photoluminescence studies of ZnO thin film grown on (1 1 1) YSZ substrate , Journal of Crystal Growth 319, 8-12 (2011)
46.K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Applied Physics Letters 68, 403 (1996)
47.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics 79, 7983 (1996)
48.B. Lin, Z. Fu, Y. Jia, and G. Liao, Defect Photoluminescence of Undoping ZnO Films and Its Dependence on Annealing Conditions, Journal of The Electrochemical Society 148, G110 (2001)
49.R. Chen , B. Ling , X. W. Sun , and H. D. Sun, Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks, Advanced Materials 23, 2199–2204 (2011)
50.H. Yan, J. Johnson, M. Law, R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. Yang, ZnO Nanoribbon Microcavity Lasers, Advanced Materials 15(22), 1907 (2003)
51.K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata,D. Nakamura, N. Koshizaki, and T. Okada, Ultraviolet whispering-gallery-mode lasing in ZnO micro/nano sphere crystal, Applied Physics Letters 101, 211105 (2012)
52.H. Dong, S. Sun, L. Sun, W. Zhou, L. Zhou, X. Shen, Z. Chen, J. Wang, and L. Zhang, Thermodynamic-effect-induced growth, optical modulation and UV lasing of hierarchical ZnO Fabry–Perot resonators, Journal of Materials Chemistry 22, 3069 (2012)
53.C. S. Wang, Y. L. Chen, H. Y. Lin, Y. T. Chen, and Y. F. Chen, Enhancement of random lasing through fluorescence resonance energy transfer and light scattering mediated by nanoparticles, Applied Physics Letters 97, 191104 (2010)
54.H. C. Hsu, C. Y. Wu, and W. F. Hsieh, Stimulated emission and lasing of random-growth oriented ZnO nanowires, Journal of Applied Physics 97, 064315 (2005)
55.H. Y. Yang, S. F. Yu,and S. P. Lau, Wide tunable ultraviolet random lasing action from ZnMgo thin films, Journal of Crystal Growth 312, 16-18 (2009)
56.C. S. Wang, H. Y. Lin, T. H. Lin, and Y. F. Chen, Enhancement of random lasing assisted by light scattering and resonance energy transfer based on ZnO/SnO nanocomposites, AIP Advances 2, 012133 (2012)
57.R. Chen , M. I. B.Utama , Z. Peng , B. Peng , Q. Xiong , and H. Sun , Excitonic Properties and Near-Infrared Coherent Random Lasing in Vertically Aligned CdSe Nanowires, Advanced Materials 23, 1404-1408 (2011)
58.H. Fujiwara, R. Niyuki, Y. Ishikawa, N. Koshizaki, T. Tsuji, and K. Sasaki, Low-threshold and quasi-single-mode random laser within a submicrometer-sized ZnO spherical particle film, Applied Physics Letters 102, 061110 (2013)
59.E. W. Seelig, B. Tang, A. Yamilov, H. Cao,and R. P. H. Chang, Self-assembled 3D photonic crystals from ZnO colloidal spheres, Materials Chemistry and Physics 80, 257 (2003)
60.H. M. Cheng, H. C. Hsu, S. L. Chen, W. T. Wu, C. C. Kao, L. J. Lin, and W. F. Hsieh, Efficient UV photoluminescence from monodispersed secondary ZnO colloidal spheres synthesized by sol–gel method, Journal of Crystal Growth 277, 192-199 (2005)
61.http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
62.L. Wischmeier, T. Voss, I. Rückmann, and J. Gutowski, Dynamics of surface-excitonic emission in ZnO nanowires, Physical Review B 74, 195333 (2006)
63.L. Wischmeier, T. Voss, I. R¨uckmann and J. Gutowski, Correlations between surface-excitonic emission bands in ZnO nanowires, Nanotechnology 19, 135705 (2008)
64.Y. P. Varshni, TEMPERATURE DEPENDENCE OF THE ENERGY GAP IN SEMICONDUCTORS, Physica 34, 149-154 (1967)
65.C. Wo¨ ll, The chemistry and physics of zinc oxide surfaces , Progress in Surface Science 82, 55–120 (2007)
66.L.L. Yang, Q.X. Zhao, M. Willander, X.J. Liu, M. Fahlman, and J.H. Yang, Origin of the surface recombination centers in ZnO nanorods arrays by X-ray photoelectron spectroscopy, Applied Surface Science 256, 3592-3597 (2010)
67.K. Kotsis and V. Staemmler, Ab initio calculations of the O1s XPS spectra of ZnO and Zn oxocompounds, Physical Chemistry Chemical Physics 8, 1490-1498 (2006)
68.L. L. Yang, Q. X. Zhao, M. Willander, X. J. Liu, M. Fahlman, and J. H. Yang, Effective Suppression of Surface Recombination inZnONanorods Arrays during the Growth Process, Crystal Growth & Design 10(4), 1904-1910 (2010)
69.M. Biswas, Y. S. Jung, H. K. Kim, K. Kumar, G. J. Hughes, S. Newcomb, M. O. Henry, and E. McGlynn, Microscopic origins of the surface exciton photoluminescence peak in ZnO nanostructures , Physical Review B 83, 235320 (2011)



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊