跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李彥駿
研究生(外文):Yen-ChunLi
論文名稱:外加電場輔助製程於有機太陽能電池之光伏特性研究
論文名稱(外文):Studies of Photovoltaic Characteristics of Electric Field Assisted Fabrications of Organic Solar Cells
指導教授:鄭弘隆
指導教授(外文):Horng-Long Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:84
中文關鍵詞:有機太陽能電池共軛高分子富勒烯微結構電場效應
外文關鍵詞:Organic solar cellsConjugated polymersFullereneMicrostructuresElectric field effects
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究高分子-富勒烯為主動層之體異質接面(Bulk heterojunction,BHJ)有機太陽能電池,探討利用外加電場輔助製作主動層薄膜對有機太陽能電池之光伏特性的影響。主動層材料以高分子poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'- benzothiadiazole)] (PCDTBT) 當電子供體,富勒烯的衍生物[6,6]-phenyl-C61- butyric acid methyl ester (PCBM) 當電子受體,使用氯苯為溶劑,配製PCDTBT與PCBM之混合溶液,利用旋轉塗佈方式製作主動層薄膜,於主動層薄膜乾燥過程中施加電場,協助成膜。利用拉曼光譜儀、吸收光譜儀、原子力顯微鏡及X光繞射光譜儀分析主動層薄膜光學性質與微結構,研究電場輔助成膜對主動層薄膜微結構與太陽能電池元件光伏特性的影響。
光伏電特性的結果顯示,當使用PCDTBT:PCBM重量混摻比為1:2時,且於薄膜乾燥過程施加6x105 V/m垂直基板向上的電場所製作的主動層,電池元件的短路電流有明顯提昇,最佳的光電轉換效率可達3.4 %,相較於未加電場的元件則僅有2.8%。電特性的分析結果發現主動層經過施加電場後之元件,其並聯電阻有上升以及串聯電阻則有下降的趨勢,因此,改善太陽能電池的光電轉換效率。
利用光譜學方法分析電場輔助成膜對主動層薄膜微結構的效應,拉曼光譜分析結果指出,相較於未施加電場,有施加電場製作的主動層薄膜的最強波鋒有紅位移指現象,且有較小半高寬。紫外-可見吸收光譜的分析結果,則指出施加電場可增強其吸收強度,並伴隨紅移現象。上述結果建議電場輔助成膜可使PCDTBT高分子的增加有效共軛鏈長,使分子間的排列較均勻,進而提升主動層薄膜的吸收強度,可產生較多的激子數,並改善載子的傳輸,使得元件的短路電流提高,改善元件的光電轉換效率。
In this study, the photovoltaic characteristics of electric field assisted fabrications of polymer–fullerene bulk heterojunction (BHJ) organic solar cells were investigated. To prepare the active layers of BHJ organic solar cells, poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl- 2',1',3'-benzothiadiazole)] (PCDTBT) and fullerene derivatives [6,6-phenyl C61-butyric acid methyl ester (PCBM) were used as the electron donor and the electron acceptor, respectively. The PCDTBT:PCBM blended active layers were prepared by spin-coating from chlorobenzene solution, then an external electric field was applied during the drying process. We studied the effects of electric field assisted fabrications of active layers on the microstructures of the active layers and the photovoltaic properties of the solar cells. The active layers were characterized using Raman spectroscopy, absorption spectroscopy, atomic force microscopy and x-ray diffraction.
For the photovoltaic properties, we found that the BHJ organic solar cells that were made using the PCDTBT:PCBM weight ratios of 1:2 show the best power conversion efficiency (PCE) of 3.4% when an electric field of 6x105 V/m in a vertically upward direction with respect to the substrate was applied. In contrast, the reference solar cells, which the active layer formation without applying any electric field, only showed the PCE of ca. 2.8 %. As compared to the reference cells, we observed an increase in the shunt resistance and a reduction in the series resistance of the solar cells with electric field assisted fabrications of the active layer, thus supporting higher PCE.
For the PCDTBT:PCBM films with electric field assisted fabrications, Raman spectroscopy analysis results revealed a red-shift and narrow full width at half maximumof the strongest Raman band when a 532 nm excitation line was used. Meanwhile, an enhanced absorbance in the 450-650 nm was observed and associated red-shift. Above-motioned observations suggested that applied electric field during film formation resulted in films with improved effective conjugation length and better homogeneity of the PCDTBT chains, thus higher absorbance. This provides a reasonable basis for the formation of a relatively large amount of excitons and for improving charge transport, thus higher photocurrent and PCE of the solar cells
中文摘要 I
Abstract III
誌謝 V
目錄 VI
表目錄 IX
圖目錄 X
第一章 緒論 1
1-1前言 1
1-2太陽能電池種類介紹 2
1-3高分子太陽能電池的主要歷史發展 3
1-4有機太陽能電池之元件結構發展 8
1-5研究動機 11
第二章 有機太陽能電池工作原理 15
2-1 太陽光頻譜 15
2-2 有機太陽能電池工作機制 17
1.光的吸收 17
2.激子的擴散 18
3.激子的分離 18
4. 電荷收集 19
2-3 有機太陽能電池的等效電路 20
2-4 有機太陽能電池的特性參數介紹 23
2-4-1 短路電流(short circuit current) 23
2-4-2 開路電壓(open circuit voltage) 23
2-4-3 填充因子(fill factor) 24
2-4-4 轉換效率(power conversion efficiency, η) 25
第三章 實驗方法及步驟 32
3-1 實驗材料 32
3-2 元件製作流程 34
3-2-1 主動層溶液配製 34
3-2-2 元件製程 35
3-3 實驗分析儀器 38
3-3.1 元件電性量測儀器 38
3-3.2 紫外-可見光光譜儀(吸收光譜儀) 38
3-3.3 原子力顯微鏡 39
3-3.4 X光繞射光譜儀 39
3-3.5 光致螢光光譜儀 39
3-3.6 顯微拉曼光譜儀 39
第四章 外加電場輔助製程於有機太陽能電池之光伏特性研究 47
4-1 前言 47
4-2 元件電特性分析 48
4-3 紫外-可見光光譜分析 50
4-4 X光繞射光譜分析 51
4-5 原子力顯微鏡表面形態分析 52
4-6 顯微拉曼光譜分析 53
第五章 總結與未來展望 78
5-1 總結 78
5-2 未來展望 80
參考文獻 81
[1] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg
[2] H. Shirakwa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, “ Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , J. Chem. Soc., Chem. Commun., 1977, p.p. 578-580
[3] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger,H.Shirakawa, E. J. Louis, S. C. Gau, A. G. MacDiarmid, “ Electrical conductivity in doped polyacetylene , Phys. Rev. Lett., 1977, 39, p.p. 1098-1101
[4] N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F.Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene Science. 258, 1992, p.1474
[5] F. Wudl, “ The chemical properties of bulkminsterfullerene (C60) and the birth and infancy of fulleroids , Acc. Chem. Res., 1992, 25, p.p. 157-161
[6] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, J. C. Hummelen, “ 2.5% efficient organic plastic solar cells , Appl. Phys. Lett., 2001, 78, p.p. 841-843
[7] M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Krol, J. C. Hummelen, H.P. Van, R. A. J. Janssen, “ EfficientMethano [70]fullernen / MDMO-PPV bulk heterojunction photovoltaic cells , Angew. Chem. Int. Ed., 2003, 42, p.p. 3371-3375
[8] F. Padinger, R. S. Rittberger, N. S. Sariciftic, “ Effects of postproduction treatment on plastic solar cells , Adv. Funct. Mater., 2003, 13, p.p. 85-88
[9] D. Chirvase, J. Parisi, J. C. Hummelen, V. Dyakonov, “ Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites , Nanotechnology, 2004, 15, p.p. 1317-1326
[10] G. Li, V. Shortriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, Y. Yang, “ High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , Nature Materials, 2005, 4, p.p. 864-868
[11] N. Blouin, A. Michaud, M. Leclerc, “ A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells , Adv. Mater., 2007, 19, p.p. 2295-2300
[12] S. Wakim, S. Beaupre, N. Blouin, B. -R. Aich, S. Rodman, R.Gaudiana , Y. Tao, M. Leclerc, “ High efficient organic solar cells based on a poly(2,7-carbazole) derivative , J. Mater. Chem., 2009, 19, p.p. 5351-5358
[13] S. H. Park, A. Roy, S. Bezupre, S. Cho, N. Coates, J. S. Moon, D.Moses, M. Leclerc, K. Lee, A. J. Heeger, “ Bulk heterojunction solar cells with internal quantum efficiency approaching 100% , Nature Photonics, 2009, 3, p.p. 297-303
[14] S. Cho, J. H. Seo, S. H. Park, S. Beaupre, M. Leclerc, A. J. Heeger, “ A thermally stable semiconducting polymer , Adv. Mater., 2010, 22, p.p. 1253-1257
[15] Y. Sun, J. Y. Seo, C. J. Takacs, J. Seifter, A. J. Heeger, “ Inverted polymer solar cells integrated with a low-temperature-annealed sol-gel-derived zno film as an electron transport layer , Adv. Mater., 2011, 23, p.p. 1679-1683
[16] T. Y. Chu, S. Alem, S. W. Tsang, S. C. Tse, S. Wakim, J. Lu, G. Dennler, D. Waller, R. Gaudiana, Y. Tao, “ Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance , Appl. Phys. Lett., 2011, 98, p.p. 253301(3)
[17] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K.Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency, Nature Communications 2013, DOI:10.1038/ncomms2411
[18] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, “ Plastic Solar Cells , Adv. Funct. Mater., 2011, 11, p.p. 15-26
[19] J. M. Nunzi, “ Organic photovoltaic materials and devices , C. R. Physique, 2002, 3, p.p 523-542
[20] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, J. Heeger, “ Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , Science, 1995, 270, p.p. 1789-1791
[21] S. Y. Ma, Y. M. Shen, P. C. Yang, C. S. Chen, C. F. Lin “Morphological modification induced by external electric field during solution process of organic solar cells Organic Electronics,2012, 13, p.p. 297–301
[22] http://pveducation.org/pvcdrom/properties-of-sunlight/atmospheric-effects
[23] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T.Rispens, “ Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells , J. Appl. Phys., 2003, 94, p.p. 6849(6)
[24] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez and J. C. Hummelen, “ Origin of the open circuit voltage of plastic solar cells , Adv. Fun. Mater., 2001,11, p.p. 374-380
[25] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “ Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology , Adv. Funct. Mater., 2005, 15, p.p. 1617-1622
[26] G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, “ Solvent Annealing Effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes , Adv. Funct. Mater., 2007, 17, p.p. 1636-1644
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊