跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 07:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳詠任
研究生(外文):Yung-JenChen
論文名稱:合作式感知無線電網路中具有波束賦形傳輸技術之中繼選擇方法
論文名稱(外文):Relay Selection Scheme for Cooperative Cognitive Radio Networks With Beamforming Technique
指導教授:張志文張志文引用關係
指導教授(外文):Chih-Wen Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電腦與通信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:49
中文關鍵詞:合作式網路感知無線電空間多工中繼選擇奇異值分解
外文關鍵詞:Cognitive RadioCooperative NetworksRelay SelectioSingular Value Decomposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在感知無線電網路中,利用動態頻譜分配使得次要使用者可以得到更多彈性存取頻譜的機會,進而增加系統效能。此外,合作式網路的應用也可以應付在無線網路環境下多變的通道。在我們的論文中,我們考慮一個主要使用者圍繞在次要使用者網路的合作式感知無線電環境,利用可適性空間多工之投影奇異值分解,次要使用者可以同時存取頻譜並減少對主要使用者之干擾。藉由計算次要使用者至主要使用者之通道資訊,我們可以選出在環繞主要使用者之數量為相同的情況下,對主要使用者的干擾較小之中繼點。為了定義主要與次要網路之總效能,我們提出一個係數:通道干擾比,也就是將次要網路之通道容量除以對主要使用者造成的干擾,其物理意義為容忍對主要使用者之單位干擾可換得多少次要使用者之通道容量。明顯地,通道干擾比越大,則系統整體效能越好。模擬結果顯示,雖然在兩個方法之間的通道容量差距不大,但以通道干擾比來說,我們提出之方法較以主要使用者數量為選擇中繼依據之方法表現更加優良。
The cognitive radio (CR) network has become a featuring technique due to the lack of spectrum. By applying dynamic spectrum allocation schemes, the secondary users (SUs) can utilize the spectrum holes more flexibly and achieve better performance and efficiency. With the help of cooperative relaying, the SUs can overcome the throughput loss due to the error-prone wireless fading channel. In this thesis, adaptive spatial multiplexing is designed to access the spatial spectrum holes (SSH) to guarantee the throughputs of PUs. We consider a cooperative CR network that the SU network is surrounded by PU receivers, and the goal is to choose the best relays that benefit the whole system. By modifying the projected-singular decomposition value (P-SVD) and the number-based algorithm (NBA) relay selection scheme, we propose an adaptive null space (ANS) relay selection scheme in order to transmit even when the number of surrounding PUs is equal to the number of SU transmit antennas and to choose the relay with the least channel gain from SU transmitters to PU receivers which suffer interference from SU transmitters. To define the total performance of both PUs and SUs, we introduce a factor called CI ratio which is a ratio of the capacity of SUs to the interference to PUs. Obviously, the more CI ratio the system has, the better performance is achieved. Simulation results show that the ANS scheme is close to the NBA scheme in terms of average end-to-end capacity of SUs and outperforms the NBA scheme in terms of CI ratios.
Contents
Chinese Abstract...i
English Abstract...ii
Acknowledgements...iii
Contents...iv
List of Tables...vi
List of Figures...vii
1 Introduction...1
1.1 Introduction...1
1.2 Thesis Outline...2
2 Background and Literature Survey...3
2.1 Cognitive Radio Network...3
2.2 Cooperative Wireless Network...9
2.3 Literature Survey...11
3 System Model and Problem Formulation...12
3.1 System Model...12
3.1.1 Channel Model...13
3.1.2 Adaptive Spatial Multiplexing...16
3.1.3 Bottleneck Effect Elimination (BEE) Time Allocation Scheme...23
3.2 Problem Formulation...24
4 Relay Selection Schemes...26
4.1 Number-Based Assignment (NBA) Relay Selection Scheme...27
4.2 Adaptive Null Space (ANS) Relay Selection Scheme...29
iv
5 Simulation Results...32
5.1 Simulation Setup...32
5.2 Effects of Busy Probability of Surrounding Primary Users...35
5.3 Effects of Active Probability of the Alternative Relay Node...38
5.4 Effects of the Number of Alternative Relays...41
6 Conclusions and Future Works...43
6.1 Conclusions...43
6.2 Future Works...44
Bibliography...45
Vita...49
[1] R. Zhang, Y. C. Liang, and S. Cui, “Dynamic resource allocation in cognitive radio networks, IEEE Signal Processing Magazine, vol. 27, pp. 102–114, May 2010.
[2] Federal Communications Commission, “Spectrum policy task force report, ET Docket No. 02-135, November 2002.
[3] G. Zhao, J. Ma, Y. Li, T. Wu, Y. Kwon, A. Soong, and C. Tang, “Spatial spectrum holes for cognitive radio with relay-assisted directional transmission, IEEE Transactions on Wireless Communications, vol. 8, no. 10, pp. 5270–5279, October 2009.
[4] S. Yiu, M. Vu, and V. Tarokh, “Interference and noise reduction by beamforming in cognitive networks, IEEE Transactions on Communications, vol. 57, no. 10, pp. 3144–3153, October 2009.
[5] M. Kaneko and P. Popovski, “Radio resource allocation algorithm for relay-aided cellular ofdma system, in IEEE International Conference on Communications, June 2007, pp. 4831–4836.
[6] N.-E. Wu, W.-C. Huang, and H.-J. Li, “A novel relay selection algorithm for relaying networks, September 2009, pp. 1–5.
[7] L. Musavian and S. A¨ıssa, “Cross-layer analysis of cognitive radio relay networks under quality of service constraints, Barcelona, Spain, April 2009, pp. 1–5.
[8] C. P. Li, On the Relay Selection for Multi-Hops Cognitive Radio Network. National Cheng Kung University, July 2012.
[9] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next generation/ dynamic spectrum access/cognitive radio wireless networks: A survey, Computer Networks: The Int. J. of computer and Telecommun. Networking, vol. 50, no. 13, pp. 2127–2159, September 2006.
[10] S. Haykin, “Cognitive radio: Brain-empowered wireless communications, IEEE Journal on Selected Areas in Communications, vol. 23, pp. 201–220, February 2005.
[11] I. F. Akyildiz, W. Y. Lee, M. C. Vuran and S. Mohanty, “A survey on spectrum management in cognitive radio networks, vol. 46, pp. 40–48, April 2008.
[12] C. H. Wang, A Novel Time Allocation Scheme to Eliminate the Bottleneck Effects in the Cooperative Cognitive Radio. National Cheng Kung University, July 2011.
[13] L. Li, X. Zhou, H. Xu, G. Y. Li, D.Wang, and A. Soong, “Simplified relay selection and power allocation in cooperative cognitive radio systems, IEEE Transactions on Wireless Communications, vol. 10, no. 1, pp. 33–36, January 2011.
[14] C. Huppert, “Opportunistic resource allocation in mimo cognitive systems with multiple users, in International ITG Workshop on Smart Antennas, February 2011, pp. 1–6.
[15] P. Ubaidulla and S. A¨ıssa, “Optimal relay selection and power allocation for cognitive two-way relaying networks, IEEE Wireless Communications Letters, vol. 1, pp. 225–228, June 2012.
[16] L. Pan, J. Si, Z. Li, H. Huang, and J. Chen, “Optimal relay selection and power allocation for cognitive two-way relay transmission with primary user’s interference, in IEEE Wireless Communications and Networking Conference, April 2013, pp. 1797–1801.
[17] Y. Yang and S. A¨ıssa, “Cross-layer combining of information-guided transmission with network coding relaying for multiuser cognitive radio systems, IEEE Wireless Communications Letters, vol. 2, pp. 26–29, February 2013.
[18] J. Si, Z. Li, X. Chen, B. Hao, and Z. Liu, “On the performance of cognitive relay networks under primary user’s outage constraint, IEEE Communications Letters, vol. 15, pp. 422–424, April 2011.
[19] S. I. Hussain, M. M. Abdallah, M. S. Alouini, M. Hasna, and K. Qaraqe, “Best relay selection using snr and interference quotient for underlay cognitive networks, in IEEE International Conference on Communicaitons, June 2012, pp. 4176–4180.
[20] Z. Mlika, W. Ajib, W. Jaafar, and D. Haccoun, “On the performance of relay selection in cognitive radio networks, in IEEE Vehicular Technology Conference, September 2012, pp. 1–5.
[21] R. Zhang and Y. C. Liang, “Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks, IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 1, pp. 88–102, February 2008.
[22] H. Yi, H. Hu, Y. Rui, K. Guo, and J. Zhang, “Null space-based precoding scheme for secondary transmission in a cognitive radio mimo system using second-order
statistics, in IEEE International Conference on Communicaitons, June 2009, pp. 1–5.
[23] G. Cheng, W. Liu, Y. Li, and W. Cheng, “Spectrum aware on-demand routing in cognitive radio networks, in IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, April 2007, pp. 571–574.
[24] J. Liu, W. Chen, and Y. J. Zhang, “A distributed beamforming approach for enhanced opportunistic spectrum access in cognitive radios, in IEEE Global Telecommunication Conference, November 2009, pp. 1–6.
[25] J. Liu, Z. Qiu, M. Wu, and C. Shen, “Multiple relay nodes selection scheme with zero forcing weighting matrix in mimo relay networks, in IEEE Vehicular Technology Conference, September 2010, pp. 1–5.
[26] C. Ma, G. Yu, and J. Zhang, “A node grouping algorithm for joint relay selection and resource allocation in cooperative cognitive radio networks, in IEEE International Conference on Wireless Communications and Signal Processing), November 2011, pp. 1–5.
[27] X. Guan, Y. Cai, and W. Yang, “Improving primary throughput by cognitive relay beamforming with best-relay selection, in IEEE International Conference on Wireless Communications and Signal Processing), November 2011, pp. 1–5.
[28] K. L. Asaduzzaman, H. Y. Kong, and K. Lyum, “Cooperative relaying in interference limited cognitive radio networks, in IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, October 2010, pp. 280–285.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top