跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 22:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖仁壽
研究生(外文):Liao,Jen-Shou
論文名稱:鋼筋混凝土版之耐火時效與火害後貫穿剪力強度
論文名稱(外文):Fire Resistance and Punching Shear Capacity after Fire of Reinforced Concrete Slabs
指導教授:陳誠直鄭復平鄭復平引用關係
指導教授(外文):Chen,Cheng-ChihCheng,Fu-Ping
學位類別:博士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:125
中文關鍵詞:鋼筋混凝土版貫穿剪力強度高溫耐火時效
外文關鍵詞:reinforced concrete slabpunching shear strengthelevated temperaturefire resistance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:1
無梁版系統已經被廣泛使用於許多建築物,施工上較為快速,並可增加使用空間,降低樓層高度,常用於商場、停車場、橋面版等。無梁版系統最大的問題為在承受載重時會發生脆性之貫穿剪力破壞。目前對鋼筋混凝土版貫穿剪力行為研究都侷限在常溫,著重於簡支承版之貫穿剪力試驗資料與強度預測經驗公式發展。
目前國內外著重於鋼筋混凝土梁或柱構件火害研究,但對鋼筋混凝土版柱接頭區遭受火害之貫穿剪力強度行為之研究則甚少。本研究目的為進行試驗與分析,探討鋼筋混凝土版柱接頭區高溫加載下貫穿剪力之耐火時效與火害後殘餘貫穿剪力強度;另外,針對火害後鋼筋混凝土版,進一步提出簡易評估計算式預測鋼筋混凝土版之殘餘貫穿剪力強度。
本研究規劃模擬鋼筋混凝土版高溫加載行為之試驗方法,以混凝土強度、拉力鋼筋比、不同火害面及昇溫時間為試驗參數,依據ASTM E119標準昇溫曲線加熱,藉由耐火能力試驗及火害後殘餘貫穿剪力強度試驗,探討其耐火性能及殘餘強度。觀察試驗過程試體外觀、破壞情形、內部溫度分佈及撓度變化等,探討各參數對耐火時效及殘餘貫穿剪力強度之影響。不同火害面區分為樓版上拉力側受火害與樓版下壓力側受火害。
研究成果發現,高溫對於樓版上拉力側受火害或於樓版下壓力側受火害之耐火時效確有顯著差異;使用不同混凝土強度於不同火害面高溫加載,所造成混凝土表面爆裂、開裂機制各有不同,試體產生變形及破壞情形也有所差異。耐火能力試驗結果顯示,於樓版下壓力側受熱的試體,可以承受耐火時間長達8小時以上,並不會發生破壞;但高強度混凝土試體於高溫試驗過程中產生爆裂現象。樓版上拉力側受熱的試體,於4小時左右發生貫穿剪力破壞;高溫試驗過程中,不論高強度或普通強度混凝土試體均沒有發生爆裂行為,而試體破壞後出現明顯錐形貫穿形狀。火害後殘餘貫穿強度試驗結果發現,殘餘貫穿剪力強度隨昇溫時間增加逐漸遞減。
研究並利用有限元素分析預測試體內部溫度之分佈,將其簡化為等溫線,作為火害後鋼筋混凝土版之殘餘貫穿剪力強度預測之依據。有限元素分析尚能準確的預測試體斷面內部溫度之分佈趨勢。計算鋼筋混凝土版殘餘貫穿剪力強度之分析程序,可合理預測鋼筋混凝土版之殘餘貫穿之剪力強度。
當火災發生於樓版上之拉力側時,殘餘貫穿剪力強度顯著折損,且達耐火能力極限時發生脆性之貫穿剪力破壞,對於建築物結構安全影響甚巨,設計時應予重視,使防火安全設計及結構補強評估更臻完善。

Flat slab systems are widely used in various buildings, such as shopping stores and malls, parking lot, and bridge deck because the flat slab systems can be built quickly, provide more spaces, and reduce floor height. However, flat slab systems under heavy loads usually fail in punching shear. Currently, research on punching shear behavior of reinforced concrete slabs limits at room temperature and emphasizes on conducting the tests, and developing empirical formula to predict punching strength of reinforced concrete slabs supported simply.
Currently, domestic and international research of reinforced concrete structures in fire loading is highly focused on beam and column members; however, studies on the fire resistance of reinforced concrete slabs are still quite rare. The objective of this study is to investigate experimentally and analytically fire resistance and residual punching shear strength of reinforced concrete slab-column connections after elevated temperatures. Furthermore, analytical calculation is proposed to predict punching shear capacity of the reinforced concrete slabs after fire.
An experimental approach is proposed to simulate fire behavior of reinforced concrete slab-column connections under elevated temperatures and loads. The parameters of this experiment included concrete compressive strength, ratio of tensile steel reinforcement, fire exposed face, and duration in fire. The specimens were exposed to elevated temperatures in accordance with the ASTM E119 standard fire curve. Appearance, failure mode, temperature distributions, and time-deflection relations of the specimens were recorded and used to assess effects of the parameters on fire resistance and residual punching shear capacity of the specimens. Different fire exposed faces were categorized to heating on the tension side of the slabs to represent a fire above the floor slab, and heating on the compression side of the slabs to represent a fire below the floor slab.
The test results showed that the fire resistance of the specimens heated on the compression side or tension side clearly differed from each other. The mechanisms of concrete cracking and spalling also varied according to the concrete strength of the slabs and fire exposed faces. The deformation and failure mode of the specimens also differed. The test results of the fire resistance showed that slabs heated on the compression side did not fail up to eight hours. But, the slab with high-strength concrete heated on the compression side would spall. The slabs heated on the tension side, the slabs would fail at around four hours. Neither the normal-strength concrete specimens nor the high-strength concrete specimens spalled during elevated temperatures. The failed specimens appeared to have a cone shape. The residual punching shear capacity decreased with the increase of heating time.
Finite element analysis was also utilized to obtain internal temperature distribution of the specimens and the results were simplified to an isotherm to predict residual punching shear capacity of the specimens after fire. Finite element analysis could accurately predict the temperature distributions of the specimens. A proposed procedure to calculate the residual punching shear capacity reasonably predicted the residual punching shear capacity of reinforced concrete slabs after elevated temperatures.
The residual punching shear capacity decreased significantly when fire occurred on the tension side of the slab and, consequently, resulted in brittle punching shear failure which would be a serious threat to structural safety. Hence, this concept should be seriously taken into account during the structural design to achieve better fire safe design and structural retrofitting assessment.

摘要 I
ABSTRACT III
誌謝 V
目錄 VII
表目錄 XI
圖目錄 XIII
符號說明 XVIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 研究方法與內容 2
1-4 本文內容 3
第二章 文獻回顧 4
2-1 耐火研究發展歷史 4
2-2 耐火試驗規範 5
2-3 高溫之混凝土材料的性質 5
2-3-1 混凝土之力學性質 6
2-3-2 混凝土之熱學性質 8
2-4 混凝土高溫之行為 9
2-4-1 混凝土體積變化 9
2-4-2 混凝土外觀變化 10
2-4-3 混凝土爆裂行為 10
2-5 鋼筋高溫之材料性質 10
2-6 鋼筋混凝土版貫穿剪力規範 11
2-7 鋼筋混凝土版貫穿剪力研究 13
2-8 鋼筋混凝土版貫穿剪力火害研究 14
第三章 樓版拉力側高溫試驗 16
3-1 試驗規劃 16
3-2 試體設計及製作 17
3-3 試驗設備 19
3-4 試驗安裝與程序 20
3-4-1 常溫試驗 20
3-4-2 耐火能力試驗 21
3-4-3 殘餘貫穿剪力強度載重試驗 22
3-4-4 試驗條件 23
3-5 試驗結果 24
3-5-1 常溫試體試驗過程觀察 24
3-5-2 常溫貫穿剪力強度與規範分析結果比較 24
3-5-3 耐火能力試驗過程觀察 24
3-5-4 試體內部之溫度梯度變化 25
3-5-5 溫度傳遞 26
3-5-6 試體之變位變化 26
3-5-7 試體破壞模式與爆裂 27
3-5-8 試體耐火時效 28
3-5-9 火害後殘餘貫穿剪力強度試驗觀察試體之行為 28
3-5-10 試體之載重位移關係 29
3-5-11 試體斷面溫度分佈 29
3-5-12 殘餘貫穿剪力強度試驗結果 30
3-5-13 殘餘貫穿剪力強度與迴歸分析 31
第四章 樓版壓力側高溫試驗 32
4-1 試驗規劃 32
4-2 試體設計及製作 33
4-3 試驗設備 34
4-4 試驗安裝與程序 35
4-4-1 常溫試驗 36
4-4-2 耐火能力試驗 36
4-4-3 殘餘貫穿剪力強度載重試驗 37
4-4-4 試驗條件 38
4-5 試驗結果 38
4-5-1 常溫試體試驗過程觀察 38
4-5-2 常溫貫穿剪力強度與規範分析結果比較 38
4-5-3 耐火能力試驗過程觀察 39
4-5-4 試體內部之溫度變化 39
4-5-5 試體之變位變化 40
4-5-6 試體破壞模式與爆裂 40
4-5-7 試體耐火時效 41
4-5-8 火害後殘餘貫穿剪力強度試驗觀察試體之行為 41
4-5-9 試體之載重位移關係 41
4-5-10 試體斷面溫度分佈 42
4-5-11 殘餘貫穿剪力強度試驗結果 42
第五章 分析與比較 43
5-1數值模擬之介紹 43
5-1-1 熱傳理論與有限元素法 43
5-1-2 熱應力分析 45
5-2 有限元素分析之模型建立 45
5-2-1 敏感度及收歛分析 45
5-2-2 有限元素模型模擬比較 46
5-3 建議修正之規範公式 48
5-4 火害後貫穿剪力強度與有限元素計算值結果比較 49
5-5 定載下試體破壞之歷時分析 51
第六章 結論與建議 53
6-1 結論 53
6-1-1 耐火能力試驗 53
6-1-2 火害後殘餘貫穿剪力強度試驗 54
6-1-3 分析與預測 55
6-2 建議 55
參考文獻 57

Abrams, M. S. (1971). “Compressive strength of concrete at temperatures to 1600℉.” Temperature and Concrete,SP-25, American Concrete Institute, Detroit, 33-58.
Abrams, M.S. (1979). “Behavior of inorganic material in fire.” ASTM STP 685.
ACI Committee 216 (1994). “Guide for determining the fire endurance of concrete elements.” American Concrete Institute.
ASTM. (2001). “Standard test methods for fire tests of building construction and materials.” ASTM E119-01, West Conshohocken, Pa.
ACI Committee 318 (2011). “Building code requirements for structural concrete (ACI 318-11) and commentary (318R-11).” American Concrete Institute, Farmington Hills, Mich.
British Standards Institution (1985). “Structural use of concrete: Part 1, code of practice for design and construction.” BS 8110, London.
Bamonte, P., Felicetti, R., and Gambarova, P.G. (2009). “Punching shear in fire-damaged reinforced concrete slabs.” ACI Special Publication 265, 345-366.
Chan, Y.N., Peng, G. F., and Anson, M. (1999). “Residual strength and pore structure of high-strength concrete and normal-strength concrete after exposure to high temperatures.” Cem. Concr. Compos., 21(1), 23-27.
Chan, Y.N. (2000). “Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 ℃.” Cem. Concr. Res., 30, 247-251.
Cheng, F. P., Kodur, V. K. R., and Wang, T. C. (2004). “Stress-strain curves for high strength concrete at elevated temperatures.” J. Mater. Civ. Eng., 84-90.
Chen, C.C., and Li, C.Y. (2005). “Punching shear strength of reinforced concrete slabs strengthened with glass fiber-reinforced polymer laminates.” Struct. J., 102(4), 535-542.
Dodd, A.E. (1953). “The forms of silica.” Ceramics, Symposium Published by the British Ceramic Society, London.
Diederichs, U., Jumppanen, U. M., and Schneider, U. (1995). “High temperature properties and spalling behaviour of high strength concrete.” Proc., 4th Weimar Workshop on High Performance Concrete, HAB Weimar, Germany, 219-235.
Endell, K. (1926). “ Influence of high temperatures on hardened cement , aggregate , and concrete (Uber die Einwirkung Hoher Temperaturen auf Erharteten Zement , Zuschlagstoffe und Beton).” Zement (Berlin), 45, 823-829.
Ellingwood, B., and Shaver, J.R. (1980). “Effects of fire on reinforced concrete members.” Journal of structural Division, ASCE, 106(11), 2151-2166.
Eurocode 2 (1996). “ Design of concrete structures- Part 1-2;General rules-structural fire design. ” ENV 1992-1-2.
Eurocode 3 (2005). “Design of steel structures-Part 1-2;General rules-structural fire design.” EN 1993-1-2.
Felicetti, R., and Gambarova, P. G. ( 2000). “On the residual behavior of HPC slabs subjected to high temperature.” PCI/FHWA/FIB International Symposium on High-Performance Concrete, Orlando , U.S.A., 598-607.
Husem, M., (2006). “The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete.” Fire Saf. J., 41, 155-163.
Hawileh, R.A., Naser, M., Zaidan, W., and Rasheed, H.A. (2009). “Modeling of insulated CFRP-strengthened reinforced concrete T-beam.” Eng. Struct., 31, 3072-3079.
Japan Society of Civil Engineers (1986). “Standard specifications for design and construction of concrete structures, Part 1, Design.” JSCE, Tokyo, Japan.
Khoury, G. A. (1992). “Compressive strength of concrete at high temperatures.” Mag. Concr. Res., 291-309.
Kodur, V. K. R. (2000). “Spalling in high strength concrete exposed to fire - concerns, causes, critical parameters and cures.” Proc., Structures Congress, Philadelphia, VA, 1-8.
Kodur, V. K. R., and Sultan, M. A. (2003). “Effect of temperature on thermal properties of high-strength concrete.” J. Mater. Civ. Eng., 15(2), 101-107.
Kodur, V. K. R., and Phan, L. T. (2007). “Critical factors governing the fire performance of high strength concrete systems.” Fire Saf. J., 42(6-7), 482-488.
Kodur, V., and Khaliq, W. (2011). “Effect of temperature on thermal properties of different types of high-strength concrete.” J. Struct. Eng., 23(6), 793-801.
Lie, T.T., Rowe, T.J., and Lin, T.D. (1986). “Residual strength of fire-exposed reinforced concrete Column.” American Concrete Institute Publication SP. 92-9, 153–174.
Moe, J. (1961). “Shearing strength of reinforced concrete slabs and footings under concentrated loads.” Development Bulletin No. D47, Portland Cement Association, Skokie, 130.
Mowrer, R. D., and Vanderbilt, M. D. (1967). “Shear strength of lightweight aggregate reinforce concrete flat plate.” ACI J., November.
Malhotra, V.M., Ramachandran, V.S., Feldman, R.F., and Aitcin, P.C. (1987). “Condensed silica fume in concrete.” CRC Press, Florida.
Marzouk, H., and Hussein, A. (1992). “Experimental investigation on the behavior of high-strength concrete slabs.” Struct. J., 88(6), 701-713.
Menétrey, P. (1998). “Relationships between flexural and punching failure.” Struct. J., 95(4), 412-419.
Moss, P.J., Dhakal, R.P., Wang, G., and Buchanan, A.H. (2008). “The fire behaviour of multi-bay, two-way reinforced concrete slabs.” Eng. Struct., 30, 3566-3573.
Narayanan, R. S. (1994). “Concrete structures: Euro code 2 and BS8110 Compared.” Longman Scientific and Technical.
Phan, L. T. (1996). “Fire performance of high-strength concrete: a report of the state-of-the-art.” National Institute of Standards and Technology, Gaithersburg, Md.
Rixom, M.R., and Mailvaganan, N.P. (1986).”Chemical admixtures for concrete.” E.&; F.N. Spon, London, 2nd edition.
Schneuder, (1976). “Bestimmung der aguivalenten brandauer von statisch bestimmt gelagerten stahlbetonbalken bei naturlichen branden.” Bericht Des Institutes for Baustoffkunde und Stahlbeton Bau Der Technischen University at Braynschweig.
Sellevold, E. J. (1987). “Condensed silica fume in concrete: a world review.” International Workshop on Condensed Silica Fume in Concrete. Montreal, May 4-5.
Xiao, J. (2004). “Study on concrete at high temperature in china-an overview.” Fire Saf. J., 39, 89-103.
楊旻森、陳舜田(1992),「混凝土火害後之乾縮應變及其影響」,中華民國第一屆結構工程研討會,第33-44頁,南投,民國81年。
張宏如(1993),「噴水對混凝土燒失量之影響」,國立台灣工業技術學院碩士論文。
陳建忠、鄭復平 (2001),「高性能混凝土柱耐火性能之評估」,NOIS-902010,內政部建築研究所,台北,民國90年。
林英俊、林欽仁、林世隆(1995),「鋼筋混凝土版之貫穿剪力」,中國土木水利工程學刊,第七卷,第三期,第75-82頁。
張俊鴻(2001),「火害後混凝土圍束補強之研究」,國立交通大學工學院土木工程學系碩士論文,趙文成指導,民國90年。
王天志(2003),「高性能混凝土柱耐火性能之研究」,國立交通大學工學院土木工程學系博士論文,鄭復平指導。
黃彰斌、林誠興、徐瑞祥(2006),「鋼筋混凝土梁受火害時之溫度分佈與殘餘強度分析」,技術學刊第二十一卷,第二期,第175-188頁,民國95年。
黃國立(2009),「鋼筋混凝土角柱之火害行為研究」,國立交通大學工學院土木工程學系博士論文,趙文成指導。
張博、何沛祥(2010),「高溫下預應力混凝土板溫度場及力學性能的數值分析」,工程與建設,第二十四卷,第三期,第298-303頁。
方一匡、李其忠、邱柏昇、葉治銘、劉泰慰(2011),「自充填混凝土梁柱複合構件承受高溫之行為研究」,中國土木水利工程學刊,第二十三卷,第一期,第55-64頁。
呂文堯、游新旺(2012),「鋼筋混凝土版之貫穿剪力強度評估」,技術學刊,第二十七卷,第一期,第9-19頁。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top