跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 21:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文佐
研究生(外文):Huang, Wen-Tso
論文名稱:修正式簡化型限制驅導式方法於迴流流程工廠生產排程之應用
論文名稱(外文):A Modification of Simplified Drum Buffer Rope for Reentrant Flow Shop Scheduling
指導教授:張永佳張永佳引用關係
指導教授(外文):Chang, Yung-Chia
學位類別:博士
校院名稱:國立交通大學
系所名稱:工業工程與管理系所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:85
中文關鍵詞:限制驅導式方法簡化型限制驅導式方法迴流流程工廠排程隨機環境
外文關鍵詞:Drum-buffer-ropesimplified drum-buffer-ropereentrant flow shopschedulingrandom environments
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
傳統的簡化型限制驅導式(simplified drum-buffer-rope,SDBR)方法假設工件只流經產能受限資源(capacity constrained resource,CCR)或瓶頸一次。當傳統的SDBR應用於迴流流程工廠(reentrant flow shop,RFS)時,其生產績效有以下三點可再改進之處:第一是短生產週期工單永遠較長生產週期工單優先加工;第二是處於不同產品但擁有相同的交期延誤緊急程度比率的情況下,無法區別延遲風險較高的工單;第三是處於同一產品且擁有相同的交期延誤緊急程度比率的情況下,也無法區別延遲風險較高的工單。為了改善SDBR應用於RFS的缺失,本研究提出以緩衝狀態偏差率來決定所有工單在單一產品的RFS環境下之加工優先順序,並將該方法擴充至多產品生產環境下的應用。此外,由於傳統的SDBR並未考慮迴流特性與機台的當機情況,本研究針對此種隨機變動的RFS提出了SDBR的交期承諾機制、投料法則與派工法則的改良。此改良的方法首先依照訂單經過CCR的次數重新排序,並依照非遞增順序將多迴流工單的已規劃負荷累加到CCR上,並以此指派訂單交期與投料日期。隨後利用緩衝狀態偏差率作為改良的派工法則以消除機台隨機當機之影響。本研究將所提出之方法應用於一個模擬的RFS環境中,並將所產出之模擬結果與其他三種方法相比。模擬結果顯示本研究所提出的方法在當產品組合中擁有比重較大的多迴流工單或當CCR的利用率由60%增加至90%時,與六個交期相關的績效衡量指標相比後,可有更佳的表現。
The conventional simplified drum-buffer-rope (SDBR) assumed that each job visits capacity-constrained-resource (CCR) or bottleneck at most once. When the conventional SDBR is applied in a reentrant flow shop (RFS), the production performance could be improved via the following three aspects. Firstly, orders with short production cycles are always prioritized than those with long ones. Secondly, orders with high level of risk of delay cannot be distinguished when different products have the same urgency in delivery. Thirdly, orders with high level of risk of delay cannot be distinguished when the same products have the same urgency in delivery. In order to improve the drawbacks of the conventional SDBR in a RFS, this research proposes the deviation of the buffer status to decide the priority of all orders for RFS in a single-product production environment. Later, this research extends the approach to a multi-product production environment. The conventional SDBR does not consider the application of RFS in a random environment which might involve reentry property and machine breakdowns. In this random RFS, the due-date assignment method, order release rule and dispatching rule of the conventional SDBR were improved. This research determines the sequence of the multi-reentrant orders among the planned load of the CCR in nonincreasing order to assign their due-dates and release dates, and using the deviation of buffer status as a dispatching rule to eliminate the influence of machine breakdowns. This research applied the approaches in a RFS where the simulation results were contrast to the other three methods. The experimental results show that when compared to six performance indexes related to the due-date, the approaches have better performance than the other three methods when the product mix with a large proportion of multi-reentrant orders and when the CCR utilization increases from 60% to 90%.
Contents
中文摘要.................................................................................... i
Abstract...................................................................................... ii
Acknowledgement....................................................................... iii
Contents..................................................................................... iv
List of Figures............................................................................. vi
List of Tables............................................................................... viii
Notations.................................................................................... x
1. Introduction.......................................................................... 1
2. Literature Reviews................................................................. 6
2.1. Drum–Buffer–Rope............................................................ 6
2.2. Simplified Drum–Buffer–Rope............................................... 7
2.3. Reentrant Flow Shop........................................................... 11
2.4. Due–Date Assignment......................................................... 12
3. A Modification for SDBR in a Deterministic RFS Environment... 16
3.1. A Modification of SDBR for RFS in a Single–Product Environment... 16
3.2. A Modification of SDBR for RFS in a Multi–Product Environment.... 29
4. A Modification for SDBR in a Random RFS Environment.......... 45
4.1. SDBR_DReentry Model.......................................................... 45
4.2. Description of SDBR, CR method and method K......................... 47
4.3. Profile of the Simulation Environment...................................... 47
4.4. Example of SDBR_DReentry.................................................... 49
4.5. Experimental Results........................................................... 51
4.6. Discussion....................................................................... 59
5. Modified DDA and Dispatching Rule for SDBR in a Random
RFS Environment............................................................

61
5.1. The enhanced SDBR........................................................... 61
5.2. Description of the conventional SDBR and method K.................... 64
5.3. Example of the enhanced SDBR............................................. 65
5.4. Experimental Results........................................................... 68
5.5. Discussion....................................................................... 77
5.6. Summary........................................................................ 79
6. Conclusions and Future Research............................................. 80
6.1. Conclusions..................................................................... 80
6.2. Future Research................................................................. 81
References.................................................................................. 82


References
Arzi, Y., and Herbon, A., 2000. Machine learning based adaptive production control for a multi-cell flexible manufacturing system operating in a random environment. International Journal of Production Research, 38(1), 161–185.
Azaron A., Fynes B., and Modarres, M., 2011. Due date assignment in repetitive projects. International Journal of Production Economics, 129, 79–85.
Berenson, M.L., Levine, D.M., and Kerhbiel, T.C., 2009. Basic Business Statistics, Eleventh Edition, Person Education, New Jersey.
Chang, Y.C., and Huang, W.T., 2011a. A modification of simplified drum-buffer-rope for reentrant flow shop scheduling. Information Technology Journal, 10(1), 40–50.
Chang, Y.C., and Huang, W.T., 2011b. Using simplified drum-buffer-rope for re-entrant flow shop scheduling in a random environment. African Journal of Business Management, 5(26), 10796–10810.
Chen, J.S., Pan, J.C.H., and Wu, C.K., 2007. Minimizing makespan in reentrant flow-shops using hybrid tabu search. International Journal of Advanced Manufacturing Technology, 34(3), 353–361.
Chen, J.S., Pan, J.C.H., and Lin, C.M., 2008. A hybrid genetic algorithm for the reentrant flow-shop scheduling problem. Expert Systems with Applications, 34, 570–577.
Conway, R.W., Maxwell, W.L., and Miller, L.W., 1967. Theory of scheduling. Addison- Wesley Publishing Company, New York.
De, E., Ghosh, J.B., and Wells, C.E., 1993. Job selection and sequencing on a single machine in a random environment. European Journal of Operational Research, 70(3), 425–431.
Dugardin, F., Yalaoui, F., and Amodeo, L., 2010. New multi-objective method to solve reentrant hybrid flow shop scheduling problem. European Journal of Operational Research, 203(1), 22–31.
Eilon, S., and Chowdhury, I.G., 1976. Due-dates in job shop scheduling. International Journal of Production Research, 14(2), 223–238.
Goldratt, E.M., and Cox, J., 1984. The Goal. North River Press, New York.
Goldratt, E.M., and Fox, R.E., 1986. The Race. North River Press, New York.
Goldratt, E.M., 1990. The Haystack Syndrome: Sifting Information Out of the Data Ocean. North River Press, New York.
Graves, S.C., Harlan, C.M., Daniel, S., and Abdel, H.Z., 1983. Scheduling of re-entrant flow shops. Journal of Operations Management, 3, 197–207.
Ho, T.F., and Li, R.K., 2004. Heuristic dispatching rule to maximize TDD and IDD performance. International Journal of Production Research, 42(24), 5133–5147.
Hopp, W.J., and Sturgis, M.L.R., 2000. Quoting manufacturing due-dates subject to a service level constraint. IIE Transactions, 32, 771–784.
Hwang, H., and Sun, J.U., 1998. Production sequencing problem with reentrant work flows and sequence dependent setup times. International Journal of Production Research, 36(9), 2435–2450.
Johnson, R.A., 2005. Probability and Statistics for Engineers, Seventh Edition, Person Education, New Jersey.
Kim, S., Davis, K.R., and Cox III, J.F., 2003. Investigation of flow mechanisms in semiconductor wafer fabrication. International Journal of Production Research, 41(4), 681-698.
Koulamas, C., 2011. A unified solution approach for the due date assignment problem with tardy jobs. International Journal of Production Economics, 132, 292–295.
Lamba, N., Karimi, I.A., and Bhalla, A., 2000. Scheduling a single-product reentrant process with uniform processing times. Industrial and Engineering Chemistry Research, 39(11), 4203–4214.
Lawrence, S.R., 1995. Estimating flowtimes and setting due-dates in complex production systems. IIE Transactions, 27(5), 657–668.
Lee, J.H., Chang, J.G., Tsai, C.H., and Li, R.K., 2010. Research on enhancement of TOC simplified drum-buffer-rope system using novel generic procedures. Expert Systems with Applications, 37, 3747–3754.
Mohebbi, E., 2008. A note on a production control model for a facility with limited storage capacity in a random environment. European Journal of Operational Research, 190(2), 562–570.
Moses, S., Grant, H., Gruenwald, L., and Pulat, S., 2004. Real-time due-date assignment by build-to-order environments. International Journal of Production Research, 42(20), 4353–4374.
Pan, J.H., and Chen, J.S., 2003. Minimizing makespan in reentrant permutation flow-shops. Journal of the Operational Research Society, 54, 642–653.
Park, Y., Kim, S., and Jun, C.H., 2000. Performance analysis of reentrant flow shop with single-job and batch machines using mean value analysis. Production Planning and Control, 11(6), 537–546.
Philipoom, P.R., Wiegmann, L., and Rees, L.P., 1997. Cost-based due-date assignment with the use of classical and neuralnetwork approaches. Naval Research Logistics, 44, 21–46.
Pinedo, M., 2002. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cliffs, New Jersey.
Ragatz, G.L., and Mabert, V.A., 1984. A framework for the study of due-date management in job shops. International Journal of Production Research, 22(4), 685–695.
Russell, R.S., and Taylor, III.B.W., 2005. Operations Management: Quality and Competitiveness in a Global Environment, John Wiley and Sons, New Jersey.
Schragenheim, E., and Ronen, B., 1990. Drum-Buffer-Rope shop floor control. Production and Inventory Management Journal, 31 (3), 18–23.
Schragenheim, E., and Ronen, B., 1991. Buffer management: a diagnostic tool for production control. Production and Inventory Management Journal, 32 (2), 74–79.
Schragenheim, E., and Dettmer, H.W., 2001. Manufacturing at Warp Speed: Optimizing Supply Chain Financial Performance. CRC Press, New York.
Schragenheim, E., 2006. Using SDBR in rapid response projects [online]. Available at: http://www.scienceofbusiness.com/free-stuff/free-toc-vv-articles.aspx (accessed 12 November 2011).
Schragenheim, E., and Burkhard, R., 2007. Drum Buffer Rope and buffer management in a make-to-stock environment [online]. Available at: http://www.scienceofbusiness.com/free-stuff/free-toc-vvarticles.aspx (accessed 12 November 2011).
Sirikrai, V., and Yenradee, P., 2006. Modified drum–buffer–rope scheduling mechanism for a non-identical parallel machine flow shop with processing-time variation. International Journal of Production Research, 44 (17), 3509–3531.
Song, D.P., Hicks, C., and Earl, C.F., 2002. Product due-date assignment for complex assemblies. International Journal of Production Economics, 76, 243–256.
Soroush, H.M., 1999. Sequencing and due-date determination in the stochastic single machine problem with earliess and tardiness costs. European Journal of Operational Research, 113, 450–468.
Tyan, J.C., Chen, J.C., and Wang, F.K., 2002. Development of a state-dependent dispatch rule using theory of constraints in near-real-world wafer fabrication. Production Planning &; Control, 13(3), 253–261.
Vargas-Villamil, F.D., and Rivera, D.E., 2001. A model predictive control approach for real-time optimization of reentrant manufacturing lines. Computers in Industry, 45(1), 45–57.
Watson, K.J., Blackstone, J.H., and Gardiner, S.C., 2007. The evolution of a management philosophy: the theory of constraints. Journal of Operations Management, 25(2), 387–402.
Wu, H.H., and Yeh, M.L., 2006. A DBR scheduling method for manufacturing environments with bottleneck reentrant flows. International Journal of Production Research, 44(5), 883–902.
Wu, H.H., and Liu, J.Y., 2008. A capacity available-to-promise model for drum-buffer-rope systems. International Journal of Production Research, 46(8), 2255–2274.
Vinod, V., and Sridharan, R., 2011. Simulation modeling and analysis of due-date assignment methods and scheduling decision rules in a dynamic job shop production system. International Journal of Production Economics, 129, 127–146.
Yan, H., Lou, S., and Sethi, S.P., 2000. Robustness of various production control policies in semiconductor manufacturing. Production and Operations Management, 9(2), 171–182.
Yang, D.L., Kuo, W.H., and Chern, M.S., 2008. Multi-family scheduling in a two-machine reentrant flow shop with setups. European Journal of Operational Research, 187(3), 1160–1170.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top