1. 林志桓. (2009). RcsB 蛋白質在克雷白氏肺炎桿菌CG43中抗酸能力所扮演的角色.碩士論文,生物醫學研究所,國立交通大學.2. 曾品瑄. (2011). HdeB、HdeB1、HdeD 蛋白質參與克雷白氏肺炎桿菌CG43抗酸反應的探討.碩士論文,生物醫學研究所,國立交通大學.3. Beier, D., and R. Gross. 2008. The BvgS/BvgA phosphorelay system of pathogenic Bordetellae: structure, function and evolution. Adv Exp Med Biol 631:149-60.
4. Berg, R. D. 1995. Bacterial translocation from the gastrointestinal tract. Trends Microbiol 3:149-54.
5. Bergholz, T. M., C. L. Tarr, L. M. Christensen, D. J. Betting, and T. S. Whittam. 2007. Recent gene conversions between duplicated glutamate decarboxylase genes (gadA and gadB) in pathogenic Escherichia coli. Mol Biol Evol 24:2323-33.
6. Boot, I. R., P. Cash, and C. O'Byrne. 2002. Sensing and adapting to acid stress. Antonie Van Leeuwenhoek 81:33-42.
7. Castanie-Cornet, M. P., T. A. Penfound, D. Smith, J. F. Elliott, and J. W. Foster. 1999. Control of acid resistance in Escherichia coli. J Bacteriol 181:3525-35.
8. Christ, D., and J. W. Chin. 2008. Engineering Escherichia coli heat-resistance by synthetic gene amplification. Protein Eng Des Sel 21:121-5.
9. Cupples, C. G., and J. H. Miller. 1988. Effects of amino acid substitutions at the active site in Escherichia coli beta-galactosidase. Genetics 120:637-44.
10. De Champs, C., M. P. Sauvant, C. Chanal, D. Sirot, N. Gazuy, R. Malhuret, J. C. Baguet, and J. Sirot. 1989. Prospective survey of colonization and infection caused by expanded-spectrum-beta-lactamase-producing members of the family Enterobacteriaceae in an intensive care unit. J Clin Microbiol 27:2887-90.
11. de Maagd, R. A., and B. Lugtenberg. 1986. Fractionation of Rhizobium leguminosarum cells into outer membrane, cytoplasmic membrane, periplasmic, and cytoplasmic components. J Bacteriol 167:1083-5.
12. Edelstone, D. I., and I. R. Holzman. 1981. Oxygen consumption by the gastrointestinal tract and liver in conscious newborn lambs. Am J Physiol 240:G297-304.
13. Foster, J. W. 2004. Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898-907.
14. Gong, S., H. Richard, and J. W. Foster. 2003. YjdE (AdiC) is the arginine:agmatine antiporter essential for arginine-dependent acid resistance in Escherichia coli. J Bacteriol 185:4402-9.
15. Hong, W., Y. E. Wu, X. Fu, and Z. Chang. Chaperone-dependent mechanisms for acid resistance in enteric bacteria. Trends Microbiol.
16. Hsieh, P. F., H. H. Lin, T. L. Lin, and J. T. Wang. CadC regulates cad and tdc operons in response to gastrointestinal stresses and enhances intestinal colonization of Klebsiella pneumoniae. J Infect Dis 202:52-64.
17. Kashiwagi, K., S. Miyamoto, F. Suzuki, H. Kobayashi, and K. Igarashi. 1992. Excretion of putrescine by the putrescine-ornithine antiporter encoded by the potE gene of Escherichia coli. Proc Natl Acad Sci U S A 89:4529-33.
18. Kashiwagi, K., R. Watanabe, and K. Igarashi. 1994. Involvement of ribonuclease III in the enhancement of expression of the speF-potE operon encoding inducible ornithine decarboxylase and polyamine transport protein. Biochem Biophys Res Commun 200:591-7.
19. Kato, A., H. Ohnishi, K. Yamamoto, E. Furuta, H. Tanabe, and R. Utsumi. 2000. Transcription of emrKY is regulated by the EvgA-EvgS two-component system in Escherichia coli K-12. Biosci Biotechnol Biochem 64:1203-9.
20. Kern, R., A. Malki, J. Abdallah, J. Tagourti, and G. Richarme. 2007. Escherichia coli HdeB is an acid stress chaperone. J Bacteriol 189:603-10.
21. Lin, C. T., T. Y. Huang, W. C. Liang, and H. L. Peng. 2006. Homologous response regulators KvgA, KvhA and KvhR regulate the synthesis of capsular polysaccharide in Klebsiella pneumoniae CG43 in a coordinated manner. J Biochem 140:429-38.
22. Ma, Z., N. Masuda, and J. W. Foster. 2004. Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol 186:7378-89.
23. Machuca, A., and A. M. Milagres. 2003. Use of CAS-agar plate modified to study the effect of different variables on the siderophore production by Aspergillus. Lett Appl Microbiol 36:177-81.
24. Malki, A., H. T. Le, S. Milles, R. Kern, T. Caldas, J. Abdallah, and G. Richarme. 2008. Solubilization of protein aggregates by the acid stress chaperones HdeA and HdeB. J Biol Chem 283:13679-87.
25. Markowitz, S. M., J. M. Veazey, Jr., F. L. Macrina, C. G. Mayhall, and V. A. Lamb. 1980. Sequential outbreaks of infection due to Klebsiella pneumoniae in a neonatal intensive care unit: implication of a conjugative R plasmid. J Infect Dis 142:106-12.
26. Maroncle, N., C. Rich, and C. Forestier. 2006. The role of Klebsiella pneumoniae urease in intestinal colonization and resistance to gastrointestinal stress. Res Microbiol 157:184-93.
27. Mates, A. K., A. K. Sayed, and J. W. Foster. 2007. Products of the Escherichia coli acid fitness island attenuate metabolite stress at extremely low pH and mediate a cell density-dependent acid resistance. J Bacteriol 189:2759-68.
28. Merdanovic, M., T. Clausen, M. Kaiser, R. Huber, and M. Ehrmann. Protein quality control in the bacterial periplasm. Annu Rev Microbiol 65:149-68.
29. Merrell, D. S., C. Bailey, J. B. Kaper, and A. Camilli. 2001. The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J Bacteriol 183:2746-54.
30. Miethke, M., and M. A. Marahiel. 2007. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413-51.
31. Moreau, P. L. 2007. The lysine decarboxylase CadA protects Escherichia coli starved of phosphate against fermentation acids. J Bacteriol 189:2249-61.
32. Nishino, K., and A. Yamaguchi. 2001. Overexpression of the response regulator evgA of the two-component signal transduction system modulates multidrug resistance conferred by multidrug resistance transporters. J Bacteriol 183:1455-8.
33. Podschun, R., and U. Ullmann. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589-603.
34. Rhodius, V. A., W. C. Suh, G. Nonaka, J. West, and C. A. Gross. 2006. Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 4:e2.
35. Rode, T. M., T. Moretro, S. Langsrud, O. Langsrud, G. Vogt, and A. Holck. Responses of Staphylococcus aureus exposed to HCl and organic acid stress. Can J Microbiol 56:777-92.
36. Ron, E. Z. 2009. Editorial: an update on the bacterial stress response. Res Microbiol 160:243-4.
37. Schellhorn, H. E., J. P. Audia, L. I. Wei, and L. Chang. 1998. Identification of conserved, RpoS-dependent stationary-phase genes of Escherichia coli. J Bacteriol 180:6283-91.
38. Sklar, J. G., T. Wu, D. Kahne, and T. J. Silhavy. 2007. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473-84.
39. Skorupski, K., and R. K. Taylor. 1996. Positive selection vectors for allelic exchange. Gene 169:47-52.
40. Smith, J. L. 2003. The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions. J Food Prot 66:1292-303.
41. Su, L. H., T. L. Wu, Y. P. Chiu, J. H. Chia, A. J. Kuo, C. F. Sun, T. Y. Lin, and H. S. Leu. 2001. Outbreaks of nosocomial bloodstream infections associated with multiresistant Klebsiella pneumoniae in a pediatric intensive care unit. Chang Gung Med J 24:103-13.
42. Tapley, T. L., T. M. Franzmann, S. Chakraborty, U. Jakob, and J. C. Bardwell. Protein refolding by pH-triggered chaperone binding and release. Proc Natl Acad Sci U S A 107:1071-6.
43. Tramonti, A., M. De Canio, and D. De Biase. 2008. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites. Mol Microbiol 70:965-82.
44. Valderas, M. W., R. B. Alcantara, J. E. Baumgartner, B. H. Bellaire, G. T. Robertson, W. L. Ng, J. M. Richardson, M. E. Winkler, and R. M. Roop, 2nd. 2005. Role of HdeA in acid resistance and virulence in Brucella abortus 2308. Vet Microbiol 107:307-12.
45. Wang, W., T. Rasmussen, A. J. Harding, N. A. Booth, I. R. Booth, and J. H. Naismith. Salt bridges regulate both dimer formation and monomeric flexibility in HdeB and may have a role in periplasmic chaperone function. J Mol Biol 415:538-46.
46. Watson, D., R. D. Sleator, C. Hill, and C. G. Gahan. 2008. Enhancing bile tolerance improves survival and persistence of Bifidobacterium and Lactococcus in the murine gastrointestinal tract. BMC Microbiol 8:176.
47. Wollmann, P., and K. Zeth. 2007. The structure of RseB: a sensor in periplasmic stress response of E. coli. J Mol Biol 372:927-41.
48. Yong, D., M. A. Toleman, C. G. Giske, H. S. Cho, K. Sundman, K. Lee, and T. R. Walsh. 2009. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046-54.
49. Zhang, M., S. Lin, X. Song, J. Liu, Y. Fu, X. Ge, X. Fu, Z. Chang, and P. R. Chen. A genetically incorporated crosslinker reveals chaperone cooperation in acid resistance. Nat Chem Biol 7:671-7.
50. Zhao, B., and W. A. Houry. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem Cell Biol 88:301-14.