跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/13 23:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭健葒
論文名稱:Exendin-4有益於胰島細胞移植體的作用機轉與以 磁振造影影像偵測及追蹤植入之胰島細胞
論文名稱(外文):The mechanisms of the beneficial effect of the exendin-4 on islet grafts and the use of magnetic resonance imaging to detect and track grafted islets
指導教授:彭慧玲彭慧玲引用關係莊峻鍠莊峻鍠引用關係
指導教授(外文):Peng, Hwei-LingJuang, Jyuhn-Huarng
學位類別:博士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:胰島細胞磁振造影殼聚糖
外文關鍵詞:isletsmagnetic resonance imagingchitosan
相關次數:
  • 被引用被引用:0
  • 點閱點閱:269
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
移植人類胰島細胞對糖尿病是很有療效的方法,而面臨最大的問題是捐贈細胞不足。Exendin-4為糖尿病病人使用的處方藥物,此Glucagon-like peptide-1(GLP-1)異構物的藥理作用在刺激胰島素分泌、抑制升糖素分泌、增加?珩茩M的再生及減少?珩茩M的凋亡。本研究探討合併Exendin-4治療,對於不足量胰島細胞移植的效益,結果顯示:移植C57BL/6小鼠150顆胰島細胞至同種STZ藥物誘發糖尿病的小鼠後,合併Exendin-4治療後顯著降低其血糖;在移植後六個星期,合併Exendin-4治療組的β細胞質量約為沒有Exendin-4治療組的2.3倍;更進一步以Ki-67染色發現其胰島細胞移植體在一、四、六週可見細胞的增生標記蛋白,同時以TUNEL染色來分析其胰島細胞移植體在一、四、六週的細胞凋亡體,結果無法判斷細胞的增加,是由增生或凋亡路徑間的動態變化造成。另外,我們發展磁共振成像法觀察胰島細胞移植體的存活,首先,將已標記殼聚醣包覆氧化鐵奈米微粒(chitosan-coated superparamagnetic iron oxide nanoparticles)的胰島細胞移植於C57BL/6小鼠左腎包囊,再以磁共振成像掃描儀進行移植後追蹤;結果顯示移植後至第19週,以MRI掃描仍可偵測到左腎比右腎有30%~50%的訊號降低,進一步取下移植體以免疫組染色可確認鐵與胰島素的位置一致。為了觀察胰島細胞移植體免疫排斥情形,我們將雄性C57BL/6作為胰島細胞捐贈者而以BALB/c小鼠為受贈者,移植後以MRI掃描追蹤左腎發現至45天仍有低訊號,且在第45天時取出移植體以免疫染色確認鐵與胰島素位置一致,證明了移植體在第45天仍未被排斥。
Human islet transplantation is the most effective method for the treatment of diabetes. However, the most encountered problem is the lack of donor cells. Exendin-4, a glucagon-like peptide-1(GLP-1), has been used as a prescribed drug for diabetic patients. The GLP-1 is to stimulate insulin secretion, suppresses glucagons secretion, increases β-cell replication and neogenesis, and reduces β-cell apoptosis. The study aims to investigate if cotreatment of exendin-4 with the islet transplantation of a marginal number of fresh islets is beneficial for the hyperglycemic recipients. The results are as following: Approximately 150 C57BL/6 mouse islets were transplanted into the streptozotocin induced diabetic mice, and then the mice treated with or without exendin-4 for 6 weeks. At the 6th week, the grafts were removed for their β cell mass determination. Blood glucose levels in both groups were progressively decreased after transplantation, and the exendin-4-treated group had had lower blood glucose level than the ones without exendin-4 treatment. When compared to the controls, a 2.3-fold increase of the β-cell mass of the graft was also observed. These results indicated posttransplant exendin-4 treatment in the diabetic recipient with a marginal number of fresh islets not only expands the graft β-cell mass but also improves the transplantation outcome. At the 1st, 4th, and 6th week after transplantation, we used ki-67 staining to investigate cell prolifertation and TUNEL staining to analyze the apoptosis of pancreatic islet cell grafts. Upto now, the data are still unable to clarify the mechanisms of apoptosis or proliferation. In addition, we used a novel MRI contrast agent, chitosan-coated superparamagnetic iron oxide (CSPIO) nanoparticles, to monitor the mouse islet grafts. The male inbred C57BL/6 mice were used as donors and recipients for the islet transplantation. The grafts of CSPIO-labeled islets were found as distinct hypointense spots homogeneously located at the upper pole of the left kidney. The MRI scans revealed that the signal detected from the left kidney was 30% to 50% lower than those of the right kidney. The co-localization of iron and insulin in the removed graft was confirmed by the immunohistochemical stain. In order to investigate if immune rejection occurred in islet cell transplantation, we used C57BL/6 male mice as the islet cell donor and the BALB/c mice as recipient. At the 45th day after transplantation, a low signal detectable from the left kidney MRI scans and the iron and insulin immunohistochemical stain still retained demonstrating the grafts has not yet been excluded.


論文摘要 i
Abstract .ii
誌謝 . iii
目錄 iv
表目錄 vi
圖目錄 .vii
縮寫表 viii
縮寫表 viii
第一章緒論 1
1.1 糖尿病盛行率 1
1.2 胰島細胞的生理及病理作用介紹 2
1.3 胰島細胞治療糖尿病之進展 2
1.4 胰島細胞移植治療糖尿病之配合方案 4
1.5 研究動機與目的 7
第二章Exendin-4 合併胰島細胞移植 9
2.1 中文摘要 .9
2.2 英文摘要 11
2.3 背景介紹 13
2.4 研究目的 20
2.5 實驗方法 21
2.5.1 動物模型及製備 21
2.5.2 胰島細胞分離及移植 21
2.5.3 Exendin-4 治療方式 21
2.5.4 腹腔葡萄糖耐受試驗(IPGTT) 21
2.5.5 移植體免疫組織化學分析 22
2.5.6 移植體胰島素量的分析 23
2.6 結果 24
2.7 討論 30
第三章運用MRI 影像追蹤體內胰島細胞移植存活情形 32
3.1 中文摘要 32
3.2 英文摘要 34
3.3 背景介紹 36
3.4 磁性奈米粒子於醫學上之應用 37
3.4.1 磁性奈米粒子在治療疾病方面的應用: 37
3.4.2 磁振造影劑之包覆材料應用開發 .41
3.4.3 磁振造影劑於追蹤胰島細胞移植體的研究 42
3.4.4 殼聚醣 (CSPIO) 包覆氧化鐵奈米粒子運用於胰島細胞移植體之追蹤
研究 44
3.4.5 與非侵入式影像追蹤胰島細胞移植體之臨床需求 46
3.5 胰島移植的功能評估 .47
3.6 追蹤胰島細胞移植體的各種技術發展 48
3.7 胰島細胞異體移植影像技術的進展 49
3.7.1 生物冷光成像 50
3.7.2 磁共振成像 50
3.7.3 多肽分子GLP-1 的類似物Exendin-4 於醫學影像應用的潛力 51
3.8 研究目的 52
3.9 研究方法與材料 52
3.9.1 材料及儀器設備 54
3.9.2 儀器設備 54
3.9.3 殼聚醣CSPIO ferrofluid 製備 54
3.9.4 CSPIO 奈米粒子大小測量與 Zeta potential 測量 55
3.9.5 CSPIO 中鐵濃度測量(滴定法) 55
3.9.6 細胞吞噬鐵的測定 57
3.9.7 MRI 影像掃描 57
3.9.8 動物模型及製備 58
3.9.9 胰島細胞細胞分離及移植 58
3.9.10 RAW264.7 細胞培養: 59
3.9.11 細胞與CSPIO 共培養之處理方式 .59
3.9.12 細胞生長及存活 .59
3.9.13 細胞毒性測試 .59
3.9.14 細胞活性測試 .60
3.9.15 MRI 實驗執行 60
3.9.16 移植體免疫組織化學分析 60
3.9.17 實驗設計 61
3.10 材料來源及物理化學特性說明 61
3.10.1 本研究所使用之CSPIO 物理化學特性說明如下 62
3.11 結果與討論 65
第四章總結與討論 71
第五章未來展望 75
第六章參考文獻 76
附錄 98
論文發表 98
簡歷 99
[1] Wild S., et al.,“Global prevalence of diabetes: estimates for the year 2000 and projections for 2030”, Diabetes Care 27(5), pp.1047-53, 2004.
[2] http://www.idf.org/press-releases/idf-press-statement-china-study; http://www. hindustantimes.com/India-world-diabetes-capital/Article1-245889.aspx, Frost & Sullivan, 2009.
[3] Shaw J.E., Sicree R.A., Zimmet P.Z.,“Global estimates of the prevalence of diabetes for 2010 and 2030”, Diabetes Research and Clinical Practice 87(1), pp.4-14, 2010.
[4] Shapiro A.M.J.,et al.,“International trial of the Edmonton protocol for islet transplantation”, N Engl J Med 355, pp.1318-30, 2006.
[5] O'Gorman D., et al.,”The standardization of pancreatic donors for islet isolations”, Transplantation 80(6), pp.801-6, 2005.
[6] Shapiro A.M.J.,et al.,“Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regime”, N Engl J Med 343, pp.230-8, 2000.
[7] Ricord C., et al., “International Trial of the Edmonton Protocol for Islet Transplantation”, N Engl J Med 355(13), pp.1318-30, 2006.
[8] Matsumoto S., “Islet cell transplantation for Type 1 diabetes”, Journal of Diabetes, 2, pp.16-22, 2010.
[9] Warnock G., et al.,“Normoglycaemia after transplantation of freshly isolated and cryopreserved pancreatic islets in type 1 (insulin-dependent) diabetes mellitus”, Diabetologia 34,:pp.55-8, 1991.
[10] Juang J.H., Hsu R.S., Kuo C.H., Huang H.S.,“Normoglycemic environment is important for the growth and function of islet isograft”, Acta Diabetol 34, pp.166, 1997.
[11] Juang J.H., Hsu B.R.S., Kuo C.H., Huang H.S.,“Timing of insulin therapy for diabetic recipients with islet transplantation”, Transplant Proc 30, pp.576-7, 1998.
[12] Juang J.H., Hsu B.R.S., Kuo C.H., Huang H.S.,“Normoglycemic environment is important for the growth and function of islet isograft”, Transplant Proc 30, pp.565-6, 1998.
[13] Juang J.H.; Bonner-Weir S.; Wu Y. J.; and Weir G. C.,“Beneficial influence of glycemic control upon the growth and function of transplanted islets”, Diabetes 43, pp.1334-39, 1994.
[14] Ryan E.A., et al., “Successful islet transplantation: continued insulin reserve provides long-term glycemic control”, Diabetes 51, pp.2148-57, 2002.
[15] Juang J.H., Kuo C.H., Ueng W.N., Hsu B.R.S.,“Hyperbaric oxygen therapy enhances the performance of islet isografts”, Diabetes 47 (suppl 1), pp.A339, 1998.
[16] Juang J.H., Hsu B.R.S., Kuo C.H., Ueng W.N.,:“Beneficial effects of hyperbaric oxygen therapy on islet transplantation”, Cell Transplant 11, pp.95-101, 2002.
[17] Lacy P.E.,”Status of islet cell transplantation”, Diabetes Rev 1, pp.76-92, 1993.
[18] Reinhard G. B., et al.,“International Islet Transplant Registry”, Newsletter 5, pp.21, 1995.
[19] Reckard C. R., and Barker C. F.,“Transplantation of isolated pancreatic islets across strong and weak histocompatibility barriers”, Transplant Proc 5, pp.761-3, 1973.
[20] Naji A., Silvers W.K., Bellgrau D., and Barker C. F.,“Spontaneous diabetes in rats: destruction of islets is prevented by immunological tolerance”, Science 213: pp.1390-92, 1981.
[21] Menger M.D., et al.,“Angiogenesis and hemodynamics of microvasculature of transplanted islets of Langerhans”, Diabetes 38 (Suppl) 1, pp. 199–201, 1989.
[22] Stagner J. I., and Samols E.,“The induction of capillary bed development by endothelial cell growth factor before islet transplantation may prevent islet ischemia”,Transplant Proc 22, pp.824-8, 1990.
[23] Stagner J. I., and Samols E.,“Altered microcirculation and secretion in transplanted islets”, Transplant Proc 26, pp.1100-2, 1994.
[24] Ellemann J., et al.,“Effect of pentoxiphylline on the recovery of the preserved rat liver: 31P NMR and ultrastructural studies”, NMR Biomed 4, pp.286-93, 1991.
[25] Juang J.H., Kuo C.H, Hsu B.R.S.,“Beneficial effects of pentoxylline on islet transplantation”, Transplant Proc 32, pp.1073-75, 2000.
[26] Hibasami H., et al.,“15-Deoxyspergualin, an antiproliferative agent for human and mouse leukemia cells shows inhibitory effects on the synthetic pathway of polyamines”, Anticancer Res 11, pp.325-30, 1991.
[27] Kierszenbaum, F., et al.,“Impairment of macrophage function by inhibitors of ornithine decarboxylase activity”, Infect Immun 55(10), pp.2461-4, 1987.
[28] Juang J.H., Hsu B.R.S., Kuo C.H.,”15-Deoxyspergualin protects the islet graft from macrophage-mediated injury”, Transplant Proc 34, pp.1458-9, 2002.
[29] Kenyon N.S.,et al., “Islet transplantation:present and future perspectives”, Diabetes Metab. Rev 14,:pp.303-13, 1998.
[30] Calafiore R., et al., “Transplantation of microencapsulated pancreatic human islets for therapy of diabetes mellitus”, A preliminary report. ASAIO 38, pp.34-7, 1992.
[31] Soon-Shiong P., et al., “Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation”, Lancet 343, pp.950-1, 1994.
[32] Basadonna G.P., et al., “Antibody-mediated targeting of CD45 isoforms: a novel immunotherapeutic strategy”, Proc Natl Acad Sci U S A 95, pp.3821-6, 1998.
[33] Juang J.H., Hsu B.R.S., Kuo C.H., and Yao N.K.,: “Influence of donor age on mouse islet characteristics and transplantation”, Cell Transplant 10, pp.277-284, 2001.
[34] Hering B., Schultz A.O., Schultz B., Geier C., Bretzel R.G.,and Federlin K., International Islet Transplant Registry: Newsletter 6, pp.8, 1995.
[35] Groth C.G., et al.,“Transplantation of porcine fetal pancreas to diabetic patients”, Lancet 344, pp.1402-4, 1994.
[36] Korbutt G.S., et al., “Large scale isolation, growth and function of porcine neonatal islet cells”, J Clin Invest 97: pp.2119-29, 1996.
[37] Koblas T., et al., “An acidic pH and activation of phosphoinositide 3-kinase stimulate differentiation of pancreatic progenitors into insulin-producing cells.”, Transplant Proc 42(6), pp.2075-80, 2010.
[38] Chao K.C., Chao K. F., Chen C. F., and Liu S. H.,“A novel human stem cell coculture system that maintains the survival and function of culture islet-like cell clusters”, Cell Transplant 17(6), pp.657-64, 2008.
[39] Jiang J., et al., “Generation of insulin-producing islet-like clusters from human embryonic stem cells”, Stem Cells 25(8), pp.1940-53, 2007.
[40] Paek H.J., et al., “Origin of insulin secreted from islet-like cell clusters derived from murine embryonic stem cells”,Stem Cells 7(4), pp.226-31, 2005.
[41] Natalicchio A., et al.,“Role of the p66Shc isoform in insulin-like growth factor I receptor signaling through MEK/Erk and regulation of actin cytoskeleton in rat myoblasts”J Biol Chem 279(42), pp.43900-9, 2004.
[42] Inada A., et al.,“Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth”, Proc Natl Acad Sci U S A 105(50), pp.19915-19, 2008.
[43] Drucker, D.J., et al., “Glucagon-like peptides: regulators of cell proliferation, differentiation, apoptosis”, Mol Endocrinol 17, pp.161-171, 2003.
[44] List J. F.; and Habener J. F., “Glucagon-like peptide 1 agonists and the development and growth of pancreatic β-cells”, Am J Physiol Endocrinol Medocrinol 286, pp. E875-E881, 2004.
[45] Urusova I. A., et al.,“ GLP-1 inhibition of pancreatic islet cell apoptosis” Trends Endocrinol Metab 15, pp.27-33, 2004.
[46] Deacon C.F., et al.,“Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects”, Diabetes 44(9),pp.1126-31, 1995.
[47] Drucker D.J.; Nauck M. A.,“The incretin system: glucagon-like peptide-1 receptor agonists and dipetidyl peptidase-4 inhibitors in type 2 diabetes”, Lancet 368, pp.1696-1705, 2006.
[48] Drucker D.J.,“The role of gut hormones in glucose homeostasis”. J Clin Invest 117, pp.24-32, 2007.
[49] Baggio L. L., and Drucker D. J.,“Biology of incretins:GLP-1 and GIP”. Gastroentrology 132, pp.2131-57, 2007.
[50] Nielsen L. L., Young A. A., and Parkes D. G.,“Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes”, Regulatory Peptides 117(2), pp.77-88, 2004.
[51] Perfetti R. J., Zhou M. E., and Doyle J. M., “Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and incresses endocrine cell mass in the pancreas of old glucose-intolerant rats”, Endocrinology 141, pp.4600-05, 2000.
[52] Buteau J., Spatz M. L., Accili D., “Transcription factor FoxO1mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass”, Diabetes 55, pp.1190–96, 2006.
[53] Li Y., et al., “Beta-Cell Pdx1 expressionis essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1”, Diabetes 54, pp.482-491, 2005.
[54] Park, S., et al., “Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function”, J Biol Chem 281, pp.1159-1168, 2006.
[55] Song,W.J., et al., “Exendin-4 stimulation of cyclin A2 in beta-cell proliferation” Diabetes 57, pp.2371-81, 2008.
[56] Tschen, S.I., Dhawan S., Gurlo T., Bhushan A., “Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice”, Diabetes 58, pp.1312-1320, 2009.
[57] Egan J. M., Bulotta A., Hui H., and Perfetti R., “GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells”, Diabetes Metab Res Rev 19, pp.115-123, 2003.
[58] Li Y., et al., “Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis”, J Biol Chem 278, pp.471-478, 2003.
[59] List J. F., and Habener J. F., “Glucagon-like peptide 1 agonists and the development and growth of pancreatic-cells”, Am J Physiol 286, pp.E875-E881, 2004.
[60] Xu G., Stoffers D. A., Habener J. F., and Bonner-Weir S., “Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats”, Diabetes 48, pp.2270-76, 1999.
[61] Hadjiyanni I., et al.,,“Exendin-4 Modulates Diabetes Onset in Nonobese”, Endocrinology 149(3), pp.1338-49, 2008.
[62] Valverde I., et al.,“Bioactive GLP-1 in gut, receptor expression in pancreas, and insulin response to GLP-1 in diabetes-prone rats” Endocrine 23(1):77-84, 2004.
[63] Kieffer T. J., Mclintosh C. H., Pederson R. A., “Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV”, Endocrinology 136, pp.3585-96, 1995.
[64] Kulkarni R.N.,“The islet beta-cell”, Int J Biochem Cell Biol 36(3), pp.365-71, 2004.
[65] Cao Y., X., et al.,“beta-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1”, Diabetes 54, pp.482–491, 2005.
[66] Maida, A., et al., “Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice”, Gastroenterology 137, pp.2146-57, 2009.
[67] Zhang J., et al.,“Continuous stimulation of human glucagon-like peptide-1 (7–36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes”, Diabetologia 50, pp.1900–09, 2007.
[68] Uckaya, G., P., et al., “Improvement of metabolic state in an animal model of nutrition-dependent type 2 diabetes following treatment with S 23521, a new glucagon-like peptide 1 (GLP-1) analogue”, J Endocrinol 184, pp.505–513,2005.
[69] Lin, C.C., Anseth K.S.,“Glucagon-like peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic beta-cells”, Biomacromolecules 10, pp.2460-67, 2009.
[70] Merani, S., et al.,“Liraglutide, a long-acting human glucagon-like peptide 1 analog, improves glucose homeostasis in marginal mass islet transplantation in mice”, Endocrinology 149, pp.4322-28, 2008.
[71] Toyoda, K., et al.,“GLP-1 receptor signaling protects pancreatic beta cells in intraportal islet transplant by inhibiting apoptosis”, Biochem. Biophys. Res.Commun 367, pp.793-8, 2008.
[72] Sarkar S.A., et al., “Dominant negative mutant forms of the cAMP response element binding protein induce apoptosis and decrease the anti-apoptotic action of growth factors in human islets”, Diabetologia 50, pp.1649-59, 2007.
[73] Bonny C., et al. “IB1 reduces cytokine-induced apoptosis of insulin-secreting cells”, J Biol Chem 275, pp.16466-72, 2000.
[74] Eng J., et al.,“ Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas”, J Biol Chem 267(11), pp.7402-5, 1992.
[75] King A., et al.,“Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment”, Diabetologia 48,: pp.2074-2079, 2005.
[76] Juang J.H., Kuo C.H., Wu C.H., and Juang C., “Exendin-4 treatment expands graft ??cell mass in diabetic mice transplanted with a marginal number of fresh islets”, Cell Transplant, 17, pp.641-7, 2008.
[77] Xie T., et al., “Beta cell-specific deficiency of the stimulatory Gprotein alpha-subunit Gsalpha leads to reduced beta cell mass and insulin-deficient diabetes”, Proc. Natl Acad. Sci. USA 104, pp.19601-06, 2007.
[78] Juang, J. H., Kuo, C. H., Huang, H. S., “Fate of a small number of islets transplanted into diabetic mice”, Transnplant.Proc. 29, pp.2026-27, 1997.
[79] Scholzen T., and Gerdes J.,“The Ki-67 protein: from the known and the unknown”, J Cell Physiol 182 (3), pp.311-22, 2000.
[80] Shi S. R., Key M. E., and Kalra K. L:, “Antigen retrieval in formalin-fixed, paraffin-embedded tissues: An enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections”, J Histochem Cytochem 39, pp.741-748, 1991.
[81] Gavrieli Y., et al., “Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation”, J Cell Biol 119, pp.493-501;1992.
[82] Juang J. H.; Kuo C. H.; and Huang H. S., “Fate of a small number of islets transplanted into diabetic mice”, Translant Proc 29, pp.2026–2027, 1997.
[83] Sharma A.; et al., “Exendin-4 treatment proves metabolic control after rat islet transplantation to athymic mice with streptozotocin-induced diabetes”, Diabetologia 49, pp.1247-1253, 2006.
[84] Ar’Rajab A.; and Ahre’n B.,“Prevention of hyperglycemia improves the long-term result of islet transplantation in streptozotocin-diabetic rats”,Pancreas 7, pp.435-442, 1992.
[85] Biarne’s M.; et al.,“E. Beta-cell death and mass in syngeneically transplanted islets exposed to short- and long-term. hyperglycemia”, Diabetes 51, pp.66-72, 2002.
[86] Brown J.; et al.,“Islet cells growth after transplantation of fetal pancreas and control of diabetes”, Diabetes 30, pp.9-13, 1981.
[87] Hayek A.; Lopez A. D.; and Beattie G. M.,“Decrease in the number of neonatal islets required for successful trans-plantation by strict metabolic control of diabetic rats”, Transplantation 45, pp.940-942, 1988.
[88] Juang J. H.; Bonner-Weir S.; Wu Y. J.; and Weir G. C.,“Beneficial influence of glycemic control upon the growth and function of transplanted islets”, Diabetes 43, pp.1334-1339, 1994.
[89] Keymeulen B., et al.,“The effect of insulin treatment on function of intraportally grafted islets in streptozotocin-diabetic rats”, Transplantation 56, pp.60-64, 1993.
[90] Merino J F., et al.,“Improved outcome of islet transplanta tion in insulin-treated diabetic mice: Effects on beta-cell mass and function”, Diabetologia 40, pp.1004-1010, 1997
[91] Montan a E.; Bonner-Weir S.; and Weir G. C., “Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin diabetic C57BL/6 mice”, J Clin Invest 91, pp.780-787, 1993.
[92] Joseph A., Kalorama Information: 2012., http://kc.kaloramainformation.com/ kwictoc?key=MRI contrast agent&report=3790046.
[93] Baggio L. L.; and Drucker D. J.,“Therapeutic approaches to preserve islet mass in type 2 diabetes”, Annu Rev Med 57, pp.265-281, 2006.
[94] Frost Surrivan: Medical and Diagnostic Imaging Technology Alert. Manual Axial Loaded MRI for Patients Suffering from Spinal Instability; T-Wave Medical Scanners for Revolutionizing Medical Imaging; Non-Invasive Imaging Technique for Detecting Prognosis of Brain Tumor 27 Jan 2012., http://www.frost.com/c/ 10024/sublib/display-report.
[95] Davalli A M., et al., “Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function”, Diabetes 45, pp.1161-1167, 1996.
[96] Hun, Y. M., et al.,“In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals”, J Am Chem Soc 127, pp.12387-12391, 2005.
[97] Jun Y. W., et al., Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127, pp.5732-5733, 2005
[98] Veishe, O., et al.,“Optical and MRI multifunctional Nnanoprobe for targeting gliomas”, Nano Lett 5, pp.1003-1008, 2005.
[99] Perez, J. M., et al.,“R., Peroxidase substrate nanosensors for MR imaging”,Nano Lett 4, pp.119-122, 2004.
[100] Son S. J., et al.,“Magnetic nanotubes for magnetic-field-assisted bioseparation,biointeraction, and drug delivery”, J Am Chem Soc 127, pp.7316-7317, 2005.
[101] Kohler, N., Fryxell G. E. and Zhang M.,“A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents”, J. Am.Chem. Soc 126, pp.7206-7211, 2004.
[102] Hode, K., et al., “The influence of the sample preparation on plasma protein adsorption patterns on polysaccharide-stabilized iron oxide particles and N-terminal microsequencing of unknown proteins”, J. Drug. Target. 5, pp.35-43, 1997.
[103] Dias A.M., Hussain G.C., Marcos A., Roque A.S.,“A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides”, Biotechnology Advances 29, pp.142-155, 2011.
[104] Chen S., Li et al.,“Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery”, Langmuir 23(25), pp.12669-76, 2007.
[105] Kim D.H., et al.,“Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies”, Current Applied Physics pp.e242-e246, 2006.
[106] Drake P., et al.,“Y.J., Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field”, Hyperthermia. J Mater Chem 17, pp.4914-18, 2007.
[107] Chung T. F., et al.,“Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device”,. Appl. Phys. Lett. 91, pp.233112, 2007.
[108]Fortin J.P., et al.,“Size-Sorted Anionic Iron Oxide Nanomagnets as colloidal mediators for magnetic hyperthermia”, J. AM. CHEM. SOC 129, pp.2628-2635, 2007.
[109] Pradhan P., et al.,“Comparative evaluation of heating ability and biocompatibility of different ferrite based magnetic fluids for hyperthermia application”, Journal of Biomedical Materials Research: Part B-Applied Biomaterials 81B, pp.12-22, 2007
[110] Pradhan P., et al.,“Preparation and characterizations of manganese ferrite based magnetic liposomes for hyperthermia treatment of cancer”, J. Magnetism and magnetic materials 311, pp.208-215, 2007
[111] Runge V. M., et al., “Gd DTPA Clinical efficacy”, RadioGraphics 8(1), pp.147-159, 1988.
[112] Moghimi, S. M., Hunter, A. C., and Murray, J. C.,“Long-circulating and target-specific nanoparticles: theory to practice”, Pharmacol Rev 53, pp.283-318, 2001.
[113] Jun Y.W., et al.,“Nanoscal Size Efect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnceis via Magrtic Resonance Imaging”, J Am Chem Soc 127 (16), pp.5732-5733, 2005.
[114] Huh Y.M.,et al.,“In Vivo Magnetic Resonance Detection of Cancer by Using Multifunctional Magnetic Nanocrrystals”, J Am Chem Soc 127(35), pp.12387-91, 2005.
[115] Jung M. J., et al.,“MRI of transplanted surface-labeled pancreatic islets with heparinized superparamagnetic iron oxide nanoparticles”, Biomaterials 32(35), pp.9391-400, 2011.
[116] Tai J.H., et al.,“Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla”, Diabetes 55(11), pp.2931-8, 2006.
[117] Kim H. S., et al.,“Evaluation of Porcine Pancreatic Islets Transplanted in the Kidney Capsules of Diabetic Mice Using a Clinically Approved Superparamagnetic Iron Oxide (SPIO) and a 1.5T MR Scanner”, Korean J Radiol 11, pp. 673-682, 2010.
[118] Dias M.G.C., et al.,“A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides”, Biotechnology Advances 29, pp.142-155, 2011.
[119] Boyer C., et al.,“The design and utility of polymerstabilized iron oxide nanoparticles for nanomedicine applications”, NPG Asia Mater 2, pp.23-30, 2010.
[120] Kievit F.M., et al.,“PEI–PEG–chitosancopolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis,complexation, and transfection”, Adv Funct Mater 19, pp.2244-51, 2009.
[121] Cai J., et al.,“Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant”, Carbohydr Polym 64, pp.151-7, 2006.
[122] Khor E, and Lim LY.,“Implantable applications of chitin and chitosan”, Biomaterials 24, pp.2339-49, 2003.
[123] Laurent S., et al., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications”, Chem Rev 108, pp.2064-110, 2008.
[124] Li G., Huang K., Jiang Y., Ding P., and Yang D., “Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles”, Biochem Eng J 40, pp.408-14, 2008..
[125] Sundar S., Kundu J., and Kundu S.C., “Biopolymeric nanoparticles”, Sci Technol Adv Mater 11(13), pp.1-14, 2010.
[126] Downing R.,“Historical review of pancreatic islet transplantation”, World Journal of Surgery 8(2), pp.137-142; 1984.
[127] Lacy P. E. and Kostianovsky M., “Method for the isolation of intact islets of Langerhans from the rat pancreas”, Diabetes 16(1), pp.35-39, 1967.
[128] Group D. P., “Incidence and trends of childhood type 1 diabetes worldwide 1990-1999”, Diabetic Medicine 23(8), pp.857-866; 2006.
[129] Ryan E., et al., “ Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol”, Diabetes 50: pp.710-719, 2001.
[130] Pileggi A, Ricordi C, Alessiani M, and Inverardi L., “Factors influencing islet of Langerhans graft function and monitoring”, Clin Chim Acta 310, pp.3-16, 2001.
[131] Castano L., Eisenbarth G., “Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat”, Annu Rev Immunol 8, pp.647-679, 1990.
[132] Atkinson M., Maclaren N., “The pathogenesis of insulindependent diabetes mellitus”, N Engl J Med. 331, pp.1428–1436, 1994.
[133] Bhargava R., et al. “Prevalence of hepatic steatosis after islet transplantation and its relation to graft function”, Diabetes 53, pp.1311-1317, 2004.
[134] Eckhard M., et al., “Disseminated periportal fatty degeneration after allogeneic intraportal islet transplantation in a patient with type 1 diabetes mellitus: a case report”, Transplant Proc 36, pp.1111–1116, 2004.
[135] Markmann J.F.,et al., “Magnetic resonance-defined periportal steatosis following intraportal islet transplantation: a functional footprint of islet graft survival?”, Diabetes 52 pp.1591-1594, 2003.
[136] Moore A., et al., “In vivo imaging of autologous islet grafts in the liver and under the kidney capsule in non-human primates”, Transplantation 87(11), pp.1659-1666, 2009.
[137] Massoud T. F.,and Gambhir S. S., “Molecular imaging in living subjects: seeing fundamental biological processes in a new light”, Genes and Development 17(5), pp.545-580, 2003.
[138] Zheng Q., et al., “Magnetic relaxation agents for cell labeling and imaging applications,” in Imaging the Pancreatic Beta Cell, Bethesda, Md, USA, 2003.
[139] Sambanis A., et al., Development and non-invasive monitoring of a pancreatic tissue substitute,in Imaging the Pancreatic Beta Cell, Bethesda Md USA, 2003.
[140] Constantinidis I., et al., “Non-invasive monitoring of a bioartificial pancreas in vitro and in vivo” Annals of the New York Academy of Sciences 944, pp.83-96, 2001.
[141] Lu D., et al., “13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)”,. Proceedings of the National Academy of Sciences of the United States of America 99(5), pp. 2708-2713, 2002.
[142] Gimi B., et al., Imaging of pancreatic beta-cell function by Mn2+-enhanced MRI in Imaging the Pancreatic Beta Cell, Bethesda, Md, USA ;2003.
[143] Gimi B., et al., “Functional MR microimaging of pancreatic β-cell activation” Cell Transplantation 15(2), pp.195-203, 2006.
[144] Antkowiak P. F., et al., “Noninvasive assessment of pancreatic β-cell function in vivo with manganese-enhanced magnetic resonance imaging” American Journal of Physiology-Endocrinology and Metabolism 296(3), pp.E573-E578, 2009.
[145] Barnett B. P., et al., “Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells”, Nature Medicine 13(8), pp.986-991; 2007.
[146] Moore A., et al., “In vivo imaging of autologous islet grafts in the liver and under the kidney capsule in non-human primates”, Transplantation 87(11), pp.1659-1666, 2009.
[147] Toso C., et al. ,“Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling”, American Journal of Transplantation 8(3), pp.701-706, 2008.
[148] Bertera S., et al., “Body windowenabled in vivo multicolor imaging of transplanted mouse islets expressing an insulin-timer fusion protein”, BioTechniques 35(4):718-722, 2003.
[149] Fan Z., et al., “In vivo tracking of ‘colorcoded’ effector, natural and induced regulatory T cells in the allograft response”, Nature Medicine 16(6), pp.718-722, 2010.
[150] Chen X., et al., “In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection”, Transplantation 81(10), pp.1421-1427, 2006.
[151] Cao Y. A., et al., “Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation”, Transplantation 80(1), pp.134-139, 2005.
[152] Evgenov N. V., et al., “In vivo imaging of immune rejection in transplanted pancreatic islets”, Diabetes 55(9), pp. 2419-2428, 2006.
[153] Ricordi C. and Strom T. B., “Clinical islet transplantation: advances and immunological challenges”, Nature Reviews Immunology 4(4), pp.259-268, 2004.
[154] Tsai ZT., et al., “In situ preparation of high relaxivity iron oxide nanoparticle by coating with chitosan:a potential MRI contrast agent useful for cell tracking”, J Magn Magn Mater. 322, pp.208-213; 2010.
[155] Kriz J., et al: “Magnetic resonance imaging of pancreatic islets transplanted into the right liver lobes of diabetic mice”, Transplant Proc 40, pp.444-448, 2008
[156] Kriz J., et al:, “Magnetic resonance imaging of pancreatic islets in tolerance and rejection”, Transplantation 80, pp.1596-1603, 2005
[157] Marzola P., et al., “In vivo visualization of transplanted pancreatic islets by MRI: comparison between in vivo, histological and electron microscopy findings”, Contrast Media Mol Imaging 4, pp.135-142, 2009
[158] Evgenov N. V., et al.,”Effects of glucose toxicity and islet purity on in vivo magnetic resonance imaging of transplanted pancreatic islets”, Transplantation 85(8), pp.1091-1098, 2008.
[159] Davalli A. M., et al.,”Vulnerability of islets in the immediate post transplantation period: dynamic changes in structure and function”, Diabetes 45(9), pp.1161-1167, 1996.
[160] Biarn´es M., et al.,”β-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia”, Diabetes 51(1), pp.66-72, 2002.
[161] Montana E., Bonner-Weir S., and Weir G. C., “Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin diabetic C57BL/6 mice”, Journal of Clinical Investigation 91(3), pp.780-787, 1993.
[162] Makhlouf L., et al.,”Importance of hyperglycemia on the primary function of allogeneic islet transplants”, Transplantation 76(4), pp.657–664, 2003.
[163] Nacher V., et al.,”Normoglycemia restores β-cell replicative response to glucose in transplanted islets exposed to chronic hyperglycemia”, Diabetes 47(2), pp.192-196, 1998.
[164] Melzi R., et al.,”Relevance of hyperglycemia on the timing of functional loss of allogeneic islet transplants: implication for mouse model”, Transplantation 83(2), pp.167-173, 2007.
[165] Eizirik D., et al.,”Mechanisms of defective glucose-induced insulin release in human pancreatic islets transplanted to diabetic nude mice”, Journal of Clinical Endocrinology and Metabolism 82(8), pp.2660-2663, 1997.
[166] Jansson L., et al.,”Impairment of glucoseinduced insulin secretion in human pancreatic islets transplanted to diabetic nude mice”, Journal of Clinical Investigation 96(2), pp.721-726, 1995.
[167] Rhee I., Hong S., and Chang Y., “Chitosan-Coated Ferrite (Fe3O4) Nanoparticles as a T2 Contrast Agent for Magnetic Resonance Imaging”, Journal of the Korean Physical Society 56(3), pp.868-873, 2010.
[168] Xu, Y., Du Y., Huang R., and Gao L., “Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier” Biomaterials 24, pp.5015-5022, 2003.
[169] Shen C.R., et al.,“Preparation, characterization and application of superparamagnetic iron oxide encapsulated with N-[(2-hydroxy-3-trimethylammonium)Propyl] chitosan chloride”, Carbohydr Polym 84, pp.781-787, 2011.
[170] Juang J.H., et al.,“Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles”, Transplant Proc 42, pp.2104, 2010.
[171] Faustman D.L,, et al.,“Prevention of rejection of murine islet allografts by pretreatment with antidendritic cell antibody”, Proc Natl Acad Sci U S A 81, pp.3864, 1984.
[172] Mellgren A., et al: “The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen”, Diabetologia 29:pp.670, 1986.
[173] Yang K.C., et al: “The cytoprotection of chitosan based hydrogels in xenogeneic islet transplantation: an in vivo study in streptozotocin-induced diabetic mouse”, Biochem Biophys Res Commun 393, pp.818, 2010.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top