|
[1] Wild S., et al.,“Global prevalence of diabetes: estimates for the year 2000 and projections for 2030”, Diabetes Care 27(5), pp.1047-53, 2004. [2] http://www.idf.org/press-releases/idf-press-statement-china-study; http://www. hindustantimes.com/India-world-diabetes-capital/Article1-245889.aspx, Frost & Sullivan, 2009. [3] Shaw J.E., Sicree R.A., Zimmet P.Z.,“Global estimates of the prevalence of diabetes for 2010 and 2030”, Diabetes Research and Clinical Practice 87(1), pp.4-14, 2010. [4] Shapiro A.M.J.,et al.,“International trial of the Edmonton protocol for islet transplantation”, N Engl J Med 355, pp.1318-30, 2006. [5] O'Gorman D., et al.,”The standardization of pancreatic donors for islet isolations”, Transplantation 80(6), pp.801-6, 2005. [6] Shapiro A.M.J.,et al.,“Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regime”, N Engl J Med 343, pp.230-8, 2000. [7] Ricord C., et al., “International Trial of the Edmonton Protocol for Islet Transplantation”, N Engl J Med 355(13), pp.1318-30, 2006. [8] Matsumoto S., “Islet cell transplantation for Type 1 diabetes”, Journal of Diabetes, 2, pp.16-22, 2010. [9] Warnock G., et al.,“Normoglycaemia after transplantation of freshly isolated and cryopreserved pancreatic islets in type 1 (insulin-dependent) diabetes mellitus”, Diabetologia 34,:pp.55-8, 1991. [10] Juang J.H., Hsu R.S., Kuo C.H., Huang H.S.,“Normoglycemic environment is important for the growth and function of islet isograft”, Acta Diabetol 34, pp.166, 1997. [11] Juang J.H., Hsu B.R.S., Kuo C.H., Huang H.S.,“Timing of insulin therapy for diabetic recipients with islet transplantation”, Transplant Proc 30, pp.576-7, 1998. [12] Juang J.H., Hsu B.R.S., Kuo C.H., Huang H.S.,“Normoglycemic environment is important for the growth and function of islet isograft”, Transplant Proc 30, pp.565-6, 1998. [13] Juang J.H.; Bonner-Weir S.; Wu Y. J.; and Weir G. C.,“Beneficial influence of glycemic control upon the growth and function of transplanted islets”, Diabetes 43, pp.1334-39, 1994. [14] Ryan E.A., et al., “Successful islet transplantation: continued insulin reserve provides long-term glycemic control”, Diabetes 51, pp.2148-57, 2002. [15] Juang J.H., Kuo C.H., Ueng W.N., Hsu B.R.S.,“Hyperbaric oxygen therapy enhances the performance of islet isografts”, Diabetes 47 (suppl 1), pp.A339, 1998. [16] Juang J.H., Hsu B.R.S., Kuo C.H., Ueng W.N.,:“Beneficial effects of hyperbaric oxygen therapy on islet transplantation”, Cell Transplant 11, pp.95-101, 2002. [17] Lacy P.E.,”Status of islet cell transplantation”, Diabetes Rev 1, pp.76-92, 1993. [18] Reinhard G. B., et al.,“International Islet Transplant Registry”, Newsletter 5, pp.21, 1995. [19] Reckard C. R., and Barker C. F.,“Transplantation of isolated pancreatic islets across strong and weak histocompatibility barriers”, Transplant Proc 5, pp.761-3, 1973. [20] Naji A., Silvers W.K., Bellgrau D., and Barker C. F.,“Spontaneous diabetes in rats: destruction of islets is prevented by immunological tolerance”, Science 213: pp.1390-92, 1981. [21] Menger M.D., et al.,“Angiogenesis and hemodynamics of microvasculature of transplanted islets of Langerhans”, Diabetes 38 (Suppl) 1, pp. 199–201, 1989. [22] Stagner J. I., and Samols E.,“The induction of capillary bed development by endothelial cell growth factor before islet transplantation may prevent islet ischemia”,Transplant Proc 22, pp.824-8, 1990. [23] Stagner J. I., and Samols E.,“Altered microcirculation and secretion in transplanted islets”, Transplant Proc 26, pp.1100-2, 1994. [24] Ellemann J., et al.,“Effect of pentoxiphylline on the recovery of the preserved rat liver: 31P NMR and ultrastructural studies”, NMR Biomed 4, pp.286-93, 1991. [25] Juang J.H., Kuo C.H, Hsu B.R.S.,“Beneficial effects of pentoxylline on islet transplantation”, Transplant Proc 32, pp.1073-75, 2000. [26] Hibasami H., et al.,“15-Deoxyspergualin, an antiproliferative agent for human and mouse leukemia cells shows inhibitory effects on the synthetic pathway of polyamines”, Anticancer Res 11, pp.325-30, 1991. [27] Kierszenbaum, F., et al.,“Impairment of macrophage function by inhibitors of ornithine decarboxylase activity”, Infect Immun 55(10), pp.2461-4, 1987. [28] Juang J.H., Hsu B.R.S., Kuo C.H.,”15-Deoxyspergualin protects the islet graft from macrophage-mediated injury”, Transplant Proc 34, pp.1458-9, 2002. [29] Kenyon N.S.,et al., “Islet transplantation:present and future perspectives”, Diabetes Metab. Rev 14,:pp.303-13, 1998. [30] Calafiore R., et al., “Transplantation of microencapsulated pancreatic human islets for therapy of diabetes mellitus”, A preliminary report. ASAIO 38, pp.34-7, 1992. [31] Soon-Shiong P., et al., “Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation”, Lancet 343, pp.950-1, 1994. [32] Basadonna G.P., et al., “Antibody-mediated targeting of CD45 isoforms: a novel immunotherapeutic strategy”, Proc Natl Acad Sci U S A 95, pp.3821-6, 1998. [33] Juang J.H., Hsu B.R.S., Kuo C.H., and Yao N.K.,: “Influence of donor age on mouse islet characteristics and transplantation”, Cell Transplant 10, pp.277-284, 2001. [34] Hering B., Schultz A.O., Schultz B., Geier C., Bretzel R.G.,and Federlin K., International Islet Transplant Registry: Newsletter 6, pp.8, 1995. [35] Groth C.G., et al.,“Transplantation of porcine fetal pancreas to diabetic patients”, Lancet 344, pp.1402-4, 1994. [36] Korbutt G.S., et al., “Large scale isolation, growth and function of porcine neonatal islet cells”, J Clin Invest 97: pp.2119-29, 1996. [37] Koblas T., et al., “An acidic pH and activation of phosphoinositide 3-kinase stimulate differentiation of pancreatic progenitors into insulin-producing cells.”, Transplant Proc 42(6), pp.2075-80, 2010. [38] Chao K.C., Chao K. F., Chen C. F., and Liu S. H.,“A novel human stem cell coculture system that maintains the survival and function of culture islet-like cell clusters”, Cell Transplant 17(6), pp.657-64, 2008. [39] Jiang J., et al., “Generation of insulin-producing islet-like clusters from human embryonic stem cells”, Stem Cells 25(8), pp.1940-53, 2007. [40] Paek H.J., et al., “Origin of insulin secreted from islet-like cell clusters derived from murine embryonic stem cells”,Stem Cells 7(4), pp.226-31, 2005. [41] Natalicchio A., et al.,“Role of the p66Shc isoform in insulin-like growth factor I receptor signaling through MEK/Erk and regulation of actin cytoskeleton in rat myoblasts”J Biol Chem 279(42), pp.43900-9, 2004. [42] Inada A., et al.,“Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth”, Proc Natl Acad Sci U S A 105(50), pp.19915-19, 2008. [43] Drucker, D.J., et al., “Glucagon-like peptides: regulators of cell proliferation, differentiation, apoptosis”, Mol Endocrinol 17, pp.161-171, 2003. [44] List J. F.; and Habener J. F., “Glucagon-like peptide 1 agonists and the development and growth of pancreatic β-cells”, Am J Physiol Endocrinol Medocrinol 286, pp. E875-E881, 2004. [45] Urusova I. A., et al.,“ GLP-1 inhibition of pancreatic islet cell apoptosis” Trends Endocrinol Metab 15, pp.27-33, 2004. [46] Deacon C.F., et al.,“Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type II diabetic patients and in healthy subjects”, Diabetes 44(9),pp.1126-31, 1995. [47] Drucker D.J.; Nauck M. A.,“The incretin system: glucagon-like peptide-1 receptor agonists and dipetidyl peptidase-4 inhibitors in type 2 diabetes”, Lancet 368, pp.1696-1705, 2006. [48] Drucker D.J.,“The role of gut hormones in glucose homeostasis”. J Clin Invest 117, pp.24-32, 2007. [49] Baggio L. L., and Drucker D. J.,“Biology of incretins:GLP-1 and GIP”. Gastroentrology 132, pp.2131-57, 2007. [50] Nielsen L. L., Young A. A., and Parkes D. G.,“Pharmacology of exenatide (synthetic exendin-4): a potential therapeutic for improved glycemic control of type 2 diabetes”, Regulatory Peptides 117(2), pp.77-88, 2004. [51] Perfetti R. J., Zhou M. E., and Doyle J. M., “Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and incresses endocrine cell mass in the pancreas of old glucose-intolerant rats”, Endocrinology 141, pp.4600-05, 2000. [52] Buteau J., Spatz M. L., Accili D., “Transcription factor FoxO1mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass”, Diabetes 55, pp.1190–96, 2006. [53] Li Y., et al., “Beta-Cell Pdx1 expressionis essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1”, Diabetes 54, pp.482-491, 2005. [54] Park, S., et al., “Exendin-4 uses Irs2 signaling to mediate pancreatic beta cell growth and function”, J Biol Chem 281, pp.1159-1168, 2006. [55] Song,W.J., et al., “Exendin-4 stimulation of cyclin A2 in beta-cell proliferation” Diabetes 57, pp.2371-81, 2008. [56] Tschen, S.I., Dhawan S., Gurlo T., Bhushan A., “Age-dependent decline in beta-cell proliferation restricts the capacity of beta-cell regeneration in mice”, Diabetes 58, pp.1312-1320, 2009. [57] Egan J. M., Bulotta A., Hui H., and Perfetti R., “GLP-1 receptor agonists are growth and differentiation factors for pancreatic islet beta cells”, Diabetes Metab Res Rev 19, pp.115-123, 2003. [58] Li Y., et al., “Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis”, J Biol Chem 278, pp.471-478, 2003. [59] List J. F., and Habener J. F., “Glucagon-like peptide 1 agonists and the development and growth of pancreatic-cells”, Am J Physiol 286, pp.E875-E881, 2004. [60] Xu G., Stoffers D. A., Habener J. F., and Bonner-Weir S., “Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats”, Diabetes 48, pp.2270-76, 1999. [61] Hadjiyanni I., et al.,,“Exendin-4 Modulates Diabetes Onset in Nonobese”, Endocrinology 149(3), pp.1338-49, 2008. [62] Valverde I., et al.,“Bioactive GLP-1 in gut, receptor expression in pancreas, and insulin response to GLP-1 in diabetes-prone rats” Endocrine 23(1):77-84, 2004. [63] Kieffer T. J., Mclintosh C. H., Pederson R. A., “Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV”, Endocrinology 136, pp.3585-96, 1995. [64] Kulkarni R.N.,“The islet beta-cell”, Int J Biochem Cell Biol 36(3), pp.365-71, 2004. [65] Cao Y., X., et al.,“beta-Cell Pdx1 expression is essential for the glucoregulatory, proliferative, and cytoprotective actions of glucagon-like peptide-1”, Diabetes 54, pp.482–491, 2005. [66] Maida, A., et al., “Differential importance of glucose-dependent insulinotropic polypeptide vs glucagon-like peptide 1 receptor signaling for beta cell survival in mice”, Gastroenterology 137, pp.2146-57, 2009. [67] Zhang J., et al.,“Continuous stimulation of human glucagon-like peptide-1 (7–36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes”, Diabetologia 50, pp.1900–09, 2007. [68] Uckaya, G., P., et al., “Improvement of metabolic state in an animal model of nutrition-dependent type 2 diabetes following treatment with S 23521, a new glucagon-like peptide 1 (GLP-1) analogue”, J Endocrinol 184, pp.505–513,2005. [69] Lin, C.C., Anseth K.S.,“Glucagon-like peptide-1 functionalized PEG hydrogels promote survival and function of encapsulated pancreatic beta-cells”, Biomacromolecules 10, pp.2460-67, 2009. [70] Merani, S., et al.,“Liraglutide, a long-acting human glucagon-like peptide 1 analog, improves glucose homeostasis in marginal mass islet transplantation in mice”, Endocrinology 149, pp.4322-28, 2008. [71] Toyoda, K., et al.,“GLP-1 receptor signaling protects pancreatic beta cells in intraportal islet transplant by inhibiting apoptosis”, Biochem. Biophys. Res.Commun 367, pp.793-8, 2008. [72] Sarkar S.A., et al., “Dominant negative mutant forms of the cAMP response element binding protein induce apoptosis and decrease the anti-apoptotic action of growth factors in human islets”, Diabetologia 50, pp.1649-59, 2007. [73] Bonny C., et al. “IB1 reduces cytokine-induced apoptosis of insulin-secreting cells”, J Biol Chem 275, pp.16466-72, 2000. [74] Eng J., et al.,“ Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas”, J Biol Chem 267(11), pp.7402-5, 1992. [75] King A., et al.,“Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment”, Diabetologia 48,: pp.2074-2079, 2005. [76] Juang J.H., Kuo C.H., Wu C.H., and Juang C., “Exendin-4 treatment expands graft ??cell mass in diabetic mice transplanted with a marginal number of fresh islets”, Cell Transplant, 17, pp.641-7, 2008. [77] Xie T., et al., “Beta cell-specific deficiency of the stimulatory Gprotein alpha-subunit Gsalpha leads to reduced beta cell mass and insulin-deficient diabetes”, Proc. Natl Acad. Sci. USA 104, pp.19601-06, 2007. [78] Juang, J. H., Kuo, C. H., Huang, H. S., “Fate of a small number of islets transplanted into diabetic mice”, Transnplant.Proc. 29, pp.2026-27, 1997. [79] Scholzen T., and Gerdes J.,“The Ki-67 protein: from the known and the unknown”, J Cell Physiol 182 (3), pp.311-22, 2000. [80] Shi S. R., Key M. E., and Kalra K. L:, “Antigen retrieval in formalin-fixed, paraffin-embedded tissues: An enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections”, J Histochem Cytochem 39, pp.741-748, 1991. [81] Gavrieli Y., et al., “Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation”, J Cell Biol 119, pp.493-501;1992. [82] Juang J. H.; Kuo C. H.; and Huang H. S., “Fate of a small number of islets transplanted into diabetic mice”, Translant Proc 29, pp.2026–2027, 1997. [83] Sharma A.; et al., “Exendin-4 treatment proves metabolic control after rat islet transplantation to athymic mice with streptozotocin-induced diabetes”, Diabetologia 49, pp.1247-1253, 2006. [84] Ar’Rajab A.; and Ahre’n B.,“Prevention of hyperglycemia improves the long-term result of islet transplantation in streptozotocin-diabetic rats”,Pancreas 7, pp.435-442, 1992. [85] Biarne’s M.; et al.,“E. Beta-cell death and mass in syngeneically transplanted islets exposed to short- and long-term. hyperglycemia”, Diabetes 51, pp.66-72, 2002. [86] Brown J.; et al.,“Islet cells growth after transplantation of fetal pancreas and control of diabetes”, Diabetes 30, pp.9-13, 1981. [87] Hayek A.; Lopez A. D.; and Beattie G. M.,“Decrease in the number of neonatal islets required for successful trans-plantation by strict metabolic control of diabetic rats”, Transplantation 45, pp.940-942, 1988. [88] Juang J. H.; Bonner-Weir S.; Wu Y. J.; and Weir G. C.,“Beneficial influence of glycemic control upon the growth and function of transplanted islets”, Diabetes 43, pp.1334-1339, 1994. [89] Keymeulen B., et al.,“The effect of insulin treatment on function of intraportally grafted islets in streptozotocin-diabetic rats”, Transplantation 56, pp.60-64, 1993. [90] Merino J F., et al.,“Improved outcome of islet transplanta tion in insulin-treated diabetic mice: Effects on beta-cell mass and function”, Diabetologia 40, pp.1004-1010, 1997 [91] Montan a E.; Bonner-Weir S.; and Weir G. C., “Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin diabetic C57BL/6 mice”, J Clin Invest 91, pp.780-787, 1993. [92] Joseph A., Kalorama Information: 2012., http://kc.kaloramainformation.com/ kwictoc?key=MRI contrast agent&report=3790046. [93] Baggio L. L.; and Drucker D. J.,“Therapeutic approaches to preserve islet mass in type 2 diabetes”, Annu Rev Med 57, pp.265-281, 2006. [94] Frost Surrivan: Medical and Diagnostic Imaging Technology Alert. Manual Axial Loaded MRI for Patients Suffering from Spinal Instability; T-Wave Medical Scanners for Revolutionizing Medical Imaging; Non-Invasive Imaging Technique for Detecting Prognosis of Brain Tumor 27 Jan 2012., http://www.frost.com/c/ 10024/sublib/display-report. [95] Davalli A M., et al., “Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function”, Diabetes 45, pp.1161-1167, 1996. [96] Hun, Y. M., et al.,“In vivo magnetic resonance detection of cancer by using multifunctional magnetic nanocrystals”, J Am Chem Soc 127, pp.12387-12391, 2005. [97] Jun Y. W., et al., Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127, pp.5732-5733, 2005 [98] Veishe, O., et al.,“Optical and MRI multifunctional Nnanoprobe for targeting gliomas”, Nano Lett 5, pp.1003-1008, 2005. [99] Perez, J. M., et al.,“R., Peroxidase substrate nanosensors for MR imaging”,Nano Lett 4, pp.119-122, 2004. [100] Son S. J., et al.,“Magnetic nanotubes for magnetic-field-assisted bioseparation,biointeraction, and drug delivery”, J Am Chem Soc 127, pp.7316-7317, 2005. [101] Kohler, N., Fryxell G. E. and Zhang M.,“A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents”, J. Am.Chem. Soc 126, pp.7206-7211, 2004. [102] Hode, K., et al., “The influence of the sample preparation on plasma protein adsorption patterns on polysaccharide-stabilized iron oxide particles and N-terminal microsequencing of unknown proteins”, J. Drug. Target. 5, pp.35-43, 1997. [103] Dias A.M., Hussain G.C., Marcos A., Roque A.S.,“A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides”, Biotechnology Advances 29, pp.142-155, 2011. [104] Chen S., Li et al.,“Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery”, Langmuir 23(25), pp.12669-76, 2007. [105] Kim D.H., et al.,“Surface-modified magnetite nanoparticles for hyperthermia: Preparation, characterization, and cytotoxicity studies”, Current Applied Physics pp.e242-e246, 2006. [106] Drake P., et al.,“Y.J., Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field”, Hyperthermia. J Mater Chem 17, pp.4914-18, 2007. [107] Chung T. F., et al.,“Selective growth of catalyst-free ZnO nanowire arrays on Al:ZnO for device”,. Appl. Phys. Lett. 91, pp.233112, 2007. [108]Fortin J.P., et al.,“Size-Sorted Anionic Iron Oxide Nanomagnets as colloidal mediators for magnetic hyperthermia”, J. AM. CHEM. SOC 129, pp.2628-2635, 2007. [109] Pradhan P., et al.,“Comparative evaluation of heating ability and biocompatibility of different ferrite based magnetic fluids for hyperthermia application”, Journal of Biomedical Materials Research: Part B-Applied Biomaterials 81B, pp.12-22, 2007 [110] Pradhan P., et al.,“Preparation and characterizations of manganese ferrite based magnetic liposomes for hyperthermia treatment of cancer”, J. Magnetism and magnetic materials 311, pp.208-215, 2007 [111] Runge V. M., et al., “Gd DTPA Clinical efficacy”, RadioGraphics 8(1), pp.147-159, 1988. [112] Moghimi, S. M., Hunter, A. C., and Murray, J. C.,“Long-circulating and target-specific nanoparticles: theory to practice”, Pharmacol Rev 53, pp.283-318, 2001. [113] Jun Y.W., et al.,“Nanoscal Size Efect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnceis via Magrtic Resonance Imaging”, J Am Chem Soc 127 (16), pp.5732-5733, 2005. [114] Huh Y.M.,et al.,“In Vivo Magnetic Resonance Detection of Cancer by Using Multifunctional Magnetic Nanocrrystals”, J Am Chem Soc 127(35), pp.12387-91, 2005. [115] Jung M. J., et al.,“MRI of transplanted surface-labeled pancreatic islets with heparinized superparamagnetic iron oxide nanoparticles”, Biomaterials 32(35), pp.9391-400, 2011. [116] Tai J.H., et al.,“Imaging islets labeled with magnetic nanoparticles at 1.5 Tesla”, Diabetes 55(11), pp.2931-8, 2006. [117] Kim H. S., et al.,“Evaluation of Porcine Pancreatic Islets Transplanted in the Kidney Capsules of Diabetic Mice Using a Clinically Approved Superparamagnetic Iron Oxide (SPIO) and a 1.5T MR Scanner”, Korean J Radiol 11, pp. 673-682, 2010. [118] Dias M.G.C., et al.,“A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides”, Biotechnology Advances 29, pp.142-155, 2011. [119] Boyer C., et al.,“The design and utility of polymerstabilized iron oxide nanoparticles for nanomedicine applications”, NPG Asia Mater 2, pp.23-30, 2010. [120] Kievit F.M., et al.,“PEI–PEG–chitosancopolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis,complexation, and transfection”, Adv Funct Mater 19, pp.2244-51, 2009. [121] Cai J., et al.,“Enzymatic preparation of chitosan from the waste Aspergillus niger mycelium of citric acid production plant”, Carbohydr Polym 64, pp.151-7, 2006. [122] Khor E, and Lim LY.,“Implantable applications of chitin and chitosan”, Biomaterials 24, pp.2339-49, 2003. [123] Laurent S., et al., “Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications”, Chem Rev 108, pp.2064-110, 2008. [124] Li G., Huang K., Jiang Y., Ding P., and Yang D., “Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles”, Biochem Eng J 40, pp.408-14, 2008.. [125] Sundar S., Kundu J., and Kundu S.C., “Biopolymeric nanoparticles”, Sci Technol Adv Mater 11(13), pp.1-14, 2010. [126] Downing R.,“Historical review of pancreatic islet transplantation”, World Journal of Surgery 8(2), pp.137-142; 1984. [127] Lacy P. E. and Kostianovsky M., “Method for the isolation of intact islets of Langerhans from the rat pancreas”, Diabetes 16(1), pp.35-39, 1967. [128] Group D. P., “Incidence and trends of childhood type 1 diabetes worldwide 1990-1999”, Diabetic Medicine 23(8), pp.857-866; 2006. [129] Ryan E., et al., “ Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol”, Diabetes 50: pp.710-719, 2001. [130] Pileggi A, Ricordi C, Alessiani M, and Inverardi L., “Factors influencing islet of Langerhans graft function and monitoring”, Clin Chim Acta 310, pp.3-16, 2001. [131] Castano L., Eisenbarth G., “Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat”, Annu Rev Immunol 8, pp.647-679, 1990. [132] Atkinson M., Maclaren N., “The pathogenesis of insulindependent diabetes mellitus”, N Engl J Med. 331, pp.1428–1436, 1994. [133] Bhargava R., et al. “Prevalence of hepatic steatosis after islet transplantation and its relation to graft function”, Diabetes 53, pp.1311-1317, 2004. [134] Eckhard M., et al., “Disseminated periportal fatty degeneration after allogeneic intraportal islet transplantation in a patient with type 1 diabetes mellitus: a case report”, Transplant Proc 36, pp.1111–1116, 2004. [135] Markmann J.F.,et al., “Magnetic resonance-defined periportal steatosis following intraportal islet transplantation: a functional footprint of islet graft survival?”, Diabetes 52 pp.1591-1594, 2003. [136] Moore A., et al., “In vivo imaging of autologous islet grafts in the liver and under the kidney capsule in non-human primates”, Transplantation 87(11), pp.1659-1666, 2009. [137] Massoud T. F.,and Gambhir S. S., “Molecular imaging in living subjects: seeing fundamental biological processes in a new light”, Genes and Development 17(5), pp.545-580, 2003. [138] Zheng Q., et al., “Magnetic relaxation agents for cell labeling and imaging applications,” in Imaging the Pancreatic Beta Cell, Bethesda, Md, USA, 2003. [139] Sambanis A., et al., Development and non-invasive monitoring of a pancreatic tissue substitute,in Imaging the Pancreatic Beta Cell, Bethesda Md USA, 2003. [140] Constantinidis I., et al., “Non-invasive monitoring of a bioartificial pancreas in vitro and in vivo” Annals of the New York Academy of Sciences 944, pp.83-96, 2001. [141] Lu D., et al., “13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS)”,. Proceedings of the National Academy of Sciences of the United States of America 99(5), pp. 2708-2713, 2002. [142] Gimi B., et al., Imaging of pancreatic beta-cell function by Mn2+-enhanced MRI in Imaging the Pancreatic Beta Cell, Bethesda, Md, USA ;2003. [143] Gimi B., et al., “Functional MR microimaging of pancreatic β-cell activation” Cell Transplantation 15(2), pp.195-203, 2006. [144] Antkowiak P. F., et al., “Noninvasive assessment of pancreatic β-cell function in vivo with manganese-enhanced magnetic resonance imaging” American Journal of Physiology-Endocrinology and Metabolism 296(3), pp.E573-E578, 2009. [145] Barnett B. P., et al., “Magnetic resonance-guided, real-time targeted delivery and imaging of magnetocapsules immunoprotecting pancreatic islet cells”, Nature Medicine 13(8), pp.986-991; 2007. [146] Moore A., et al., “In vivo imaging of autologous islet grafts in the liver and under the kidney capsule in non-human primates”, Transplantation 87(11), pp.1659-1666, 2009. [147] Toso C., et al. ,“Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling”, American Journal of Transplantation 8(3), pp.701-706, 2008. [148] Bertera S., et al., “Body windowenabled in vivo multicolor imaging of transplanted mouse islets expressing an insulin-timer fusion protein”, BioTechniques 35(4):718-722, 2003. [149] Fan Z., et al., “In vivo tracking of ‘colorcoded’ effector, natural and induced regulatory T cells in the allograft response”, Nature Medicine 16(6), pp.718-722, 2010. [150] Chen X., et al., “In vivo bioluminescence imaging of transplanted islets and early detection of graft rejection”, Transplantation 81(10), pp.1421-1427, 2006. [151] Cao Y. A., et al., “Molecular imaging using labeled donor tissues reveals patterns of engraftment, rejection, and survival in transplantation”, Transplantation 80(1), pp.134-139, 2005. [152] Evgenov N. V., et al., “In vivo imaging of immune rejection in transplanted pancreatic islets”, Diabetes 55(9), pp. 2419-2428, 2006. [153] Ricordi C. and Strom T. B., “Clinical islet transplantation: advances and immunological challenges”, Nature Reviews Immunology 4(4), pp.259-268, 2004. [154] Tsai ZT., et al., “In situ preparation of high relaxivity iron oxide nanoparticle by coating with chitosan:a potential MRI contrast agent useful for cell tracking”, J Magn Magn Mater. 322, pp.208-213; 2010. [155] Kriz J., et al: “Magnetic resonance imaging of pancreatic islets transplanted into the right liver lobes of diabetic mice”, Transplant Proc 40, pp.444-448, 2008 [156] Kriz J., et al:, “Magnetic resonance imaging of pancreatic islets in tolerance and rejection”, Transplantation 80, pp.1596-1603, 2005 [157] Marzola P., et al., “In vivo visualization of transplanted pancreatic islets by MRI: comparison between in vivo, histological and electron microscopy findings”, Contrast Media Mol Imaging 4, pp.135-142, 2009 [158] Evgenov N. V., et al.,”Effects of glucose toxicity and islet purity on in vivo magnetic resonance imaging of transplanted pancreatic islets”, Transplantation 85(8), pp.1091-1098, 2008. [159] Davalli A. M., et al.,”Vulnerability of islets in the immediate post transplantation period: dynamic changes in structure and function”, Diabetes 45(9), pp.1161-1167, 1996. [160] Biarn´es M., et al.,”β-cell death and mass in syngeneically transplanted islets exposed to short- and long-term hyperglycemia”, Diabetes 51(1), pp.66-72, 2002. [161] Montana E., Bonner-Weir S., and Weir G. C., “Beta cell mass and growth after syngeneic islet cell transplantation in normal and streptozocin diabetic C57BL/6 mice”, Journal of Clinical Investigation 91(3), pp.780-787, 1993. [162] Makhlouf L., et al.,”Importance of hyperglycemia on the primary function of allogeneic islet transplants”, Transplantation 76(4), pp.657–664, 2003. [163] Nacher V., et al.,”Normoglycemia restores β-cell replicative response to glucose in transplanted islets exposed to chronic hyperglycemia”, Diabetes 47(2), pp.192-196, 1998. [164] Melzi R., et al.,”Relevance of hyperglycemia on the timing of functional loss of allogeneic islet transplants: implication for mouse model”, Transplantation 83(2), pp.167-173, 2007. [165] Eizirik D., et al.,”Mechanisms of defective glucose-induced insulin release in human pancreatic islets transplanted to diabetic nude mice”, Journal of Clinical Endocrinology and Metabolism 82(8), pp.2660-2663, 1997. [166] Jansson L., et al.,”Impairment of glucoseinduced insulin secretion in human pancreatic islets transplanted to diabetic nude mice”, Journal of Clinical Investigation 96(2), pp.721-726, 1995. [167] Rhee I., Hong S., and Chang Y., “Chitosan-Coated Ferrite (Fe3O4) Nanoparticles as a T2 Contrast Agent for Magnetic Resonance Imaging”, Journal of the Korean Physical Society 56(3), pp.868-873, 2010. [168] Xu, Y., Du Y., Huang R., and Gao L., “Preparation and modification of N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride nanoparticle as a protein carrier” Biomaterials 24, pp.5015-5022, 2003. [169] Shen C.R., et al.,“Preparation, characterization and application of superparamagnetic iron oxide encapsulated with N-[(2-hydroxy-3-trimethylammonium)Propyl] chitosan chloride”, Carbohydr Polym 84, pp.781-787, 2011. [170] Juang J.H., et al.,“Magnetic resonance imaging of transplanted mouse islets labeled with chitosan-coated superparamagnetic iron oxide nanoparticles”, Transplant Proc 42, pp.2104, 2010. [171] Faustman D.L,, et al.,“Prevention of rejection of murine islet allografts by pretreatment with antidendritic cell antibody”, Proc Natl Acad Sci U S A 81, pp.3864, 1984. [172] Mellgren A., et al: “The renal subcapsular site offers better growth conditions for transplanted mouse pancreatic islet cells than the liver or spleen”, Diabetologia 29:pp.670, 1986. [173] Yang K.C., et al: “The cytoprotection of chitosan based hydrogels in xenogeneic islet transplantation: an in vivo study in streptozotocin-induced diabetic mouse”, Biochem Biophys Res Commun 393, pp.818, 2010.
|