跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 13:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊睿綱
研究生(外文):Chuang, Jui-Kang
論文名稱:利用微透鏡結構提升可撓式太陽能波導電池之特性
論文名稱(外文):Microlens Structures for Flexible Waveguiding Solar Photovoltaics
指導教授:陳方中陳方中引用關係
指導教授(外文):Chen, Fang-Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:73
中文關鍵詞:可撓式太陽能波導電池微透鏡結構
外文關鍵詞:Flexible waveguiding solar photovoltaicsMicrolens structures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究中,主要在可撓式太陽能波導模組中,加上微透鏡結構以提升效率。我們發現在波導模組上加入微透鏡結構,並使光線聚焦在TiO_2散射層底部 ,而導光效率則有明顯的提升,搭配微透鏡結構的可撓式太陽能波導模組最終效率由1.67%提升至1.92%。此外,經由量測並計算側面穿透光損失率和頂面穿透光損失率,可以證實表面微透鏡結構不單只能增加元件的導光效率,也可有效抑制光從其它非電池吸收面的穿透光損失;我們推論元件效率因此而提升,我們並使用光學軟體Tracepro 來作模擬驗證並與實驗結果一併討論。
In this study, we describe flexibility waveguiding photovoltaics (FWPVs) that exhibit higher optical efficiencies with microlens structure than flat-plane. Optical microstructure that increase the light harvesting ability of the FWPVs can be fabricated readily, through soft lithography, on the top surface of the PDMS waveguide. Our optimized microlens structure displayed power conversion efficiency (PCE) of greater than 1.92%. For a waveguiding solar moldule, the major photon losses arise from the top surfaces and edges. According to the measurement of optical loss from the edge in our waveguiding solar module, we found that the focal length affected the intensity significantly; the optimal value of focal length was 5.0 mm. On the other hand, measurement of the top surface losses suggested that degree of photon loss increased upon increasing the interval between the lens. In the end, we used a commercial ray-tracing software to simulate the experimental results. And simulation has emerged recently as an important aid to prove our speculation.
中文提要 ...I
英文提要 ...II
誌謝 ...III
目錄 ...IV
表目錄 ...VI
圖目錄 ...VII
一、 緒論 ...1
1.1 前言 ...1
1.2 太陽能集光器發展 ...4
1.3 導光式太陽能集光器工作原理 ...7
1.4 導光式太陽能集光器基本特性分析 ...9
1.5 太陽能光譜 ...15
二、 研究動機與目的 ...17
2.1 微透鏡結構簡介 ...17
2.2 研究動機 ...18
三、 實驗架構 ...20
3.1 實驗材料 ...20
3.2 實驗儀器 ...24
3.3 元件製作流程 ...33
3.4 模擬條件的建立 ...37
3.4.1 模擬光源的建立 ...38
3.4.2 模擬波導模組的建立 ...38
四、 實驗結果與討論 ...43
4.1 微透鏡設計 ...43
4.1.1 微透鏡結構與模擬影像聚焦圖 ...45
4.2 元件特性表現 ...49
4.2.1 光學量測元件特性表現 ...50
4.2.2 元件模擬特性表現 ...54
4.3 模擬單元微透鏡結構 ...58
4.4 元件特性結果分析(波導模組側面穿透光能量損失) ...61
4.5 元件特性結果分析(排除側面穿透光能量損失因素) ...63
4.6 元件特性結果分析(波導模組正向穿透光能量損失) ...65
五、 結論 ...69
六、 參考文獻 ...70
[1] From Nation Science Council:
http://web1.nsc.gov.tw/mp.aspx
[2] M. A. Green, K. Emery, D. L. King et al., “Solar cell efficiency tables (version 28)”, Prog. Photovoltaics 14 ,5, 455-461 (2006).
[3] A. De Vos, “Detailed balance limit of the efficiency of tandem solar cells”, Journal of Physics D: Applied Physics Volume 13, Issue 5, 839-846 (1980)
[4] Jung Min Kim, Partha S.Dutta, “Optical efficiency–concentration ratio trade-off for a flat panel photovoltaic system with diffuser type concentrator”, Solar Energy Materials &; Solar Cells 103,35–40 (2012)
[5] From Wa-people ITRI:
http://www.wa-people.com/2012/08/blog-post_15.html
[6] From ITRI:
http://ieknet.iek.org.tw
[7] P. Benitez, and J. C. Minano, “Concentrator optics for thenext-generation photovoltaics”, in Next Generation Photovoltaics, A.Martí and A. Luque, eds. (Institute of Physics, 2004), Ch.13.
[8] R. Winston, J. C. Minano, W. T. Welford, and P. Benitez, Nonimaging Optics, (Academic Press 2004).
[9] J. M. Gordon, “Concentrator Optics,” in Concentrator Photovoltaics,A. L. Luque and V. M. Andreev, (Springer,Berlin, 2007), Ch.6.
[10] Weber, W. H. &; Lambe, J. “Luminescent greenhouse collector for solar radiation”, .Appl. Opt. 15, 2299-2300 (1976).
[11] Slooff, L. H. et al. “A luminescent solar concentrator with 7.1% power conversion efficiency”, Phys. Stat. Sol. 2, 257-259 (2008).
[12] Debije, M. G. &; Verbunt, P. P. “Thirty years of luminescent solar concentrator research: solar energy for the built environment”, Adv. Energy Mater. 2, 12-35 (2012).
[13] Shufen Tsoi , Dirk J. Broer , Cees W. M. Bastiaansen , and Michael G. Debije, “Using Lenses to Improve the Output of a Patterned Luminescent Solar Concentrator”, Adv. Energy Mater. 2, 10-1002 (2012).
[14] S. Tsoi, et al. “Patterned dye structures limit reabsorption in luminescent solar concentrators”, Optics Express 18, A536 (2010)
[15] H. Karp Jason, J. Tremblay Eric and E. Ford Joseph ”Planar micro-optic solar concentrator”, Optics express, 12, pp1122-1133(2010)

[16] H. Karp Jason, J. Tremblay Eric and E. Ford Joseph, ”Orthogonal and secondary concentration in planar micro-optic solar collectors”, Optics express, 19, A 673-A685(2011)
[17] Currie, M. J. et al.”High-efficiency organic solar concentrators for photovoltaics”, Science, 321, 226 (2008).
[18] Verbunt, P. P. C. et al. “Increased efficiency of luminescent solar concentrators after application of organic wavelength selective mirrors”, Opt. Express, 20, A655-A668 (2012).
[19] Xu, Q. J., Zhang, S. Y. &; Wei, D. Q.,”UV scattering characteristics of TiO2 particle based on Mie light scattering theory”, Chinese J. of Luminescence 3, 409-412 (2009).
[20] Mansour, A. F. “Optical efficiency and optical properties of luminescent solar concentrators”, Polymer Testing, 17, 333-343 (1998).
[21] Roncali, J. &; Garnier, F. “Photon-transport properties of luminescent solar concentrators: analysis and optimization”, Appl. Opt. 23, 2809-2817 (1984).
[22] Saïdou Madougou1, Mohamadou Kaka1 and Gregoire Sissoko21, “Silicon Solar Cells: Recombination and Electrical Parameters”, Solar Energy pp.432, 978-953-307-052-0, (2010).
[23] J. L. Wu, “A functional interlayer of cesium carbonate for polymer photovoltaic devices,” Master Thesis (2007)
[24] J. Rostalski and D. Meissner, “Monochromatic versus solar efficiencies of organic solar cells”, Sol. Energy Mater. Sol. Cells, 61, 87-95 (2000)
[25] From Solarlux: http://www.eyesolarlux.com/Solar-simulation-energy.htm
[26] Z. D. Popovic, R. A. Sprague, and G. A. N. Connell.”Technique for the monolithic fabrication of microlens arrays”, Applied Optics, 27, pp. 1281-1284, 1988.
[27] M. C. Hutley, “Optical techniques for the generation of microlens arrays”, Journal of Modern Optics, 37, pp. 253-265, 1990.
[28] C. S. Lee and C. H. Han, ”A novel refractive silicon microlens array using bulk micromachining technology”, Sensors and Actuators A, 88, pp.87-90,2001
[29] W. R. Cox, “Micro-optics fabrication by ink-jet printing”, Optics &; Photonics News, vol. 12, pp.32-35, 2001.
[30] S. Sizinger and J. Jahns, “Microoptics”, Wiley-Vch Verlag, 1999
[31] S. K. Lee, K. C. Lee and S. S. Lee, “A simple method for microlens fabrication by the modified LIGA process”, Journal of Micromechanics and Microenginering, 12, pp. 334-340, 2002.
[32] From NCTU institute of display: http://fpdlab.ieo.nctu.edu.tw/about/riki.php?id=
[33] Michael G. Debije,1 et al. “Measured surface loss from luminescent solar concentrator waveguides”, Applied Optics, Vol 47, 97394 (2008)
[34] M. Buffa et al., “Dye-doped polysiloxane rubbers for luminescent solar concentrator systems”, Sol. Energ. Mat. &; Sol. Cells, 103, 114-118 (2012).
[35] From 3M , Inc:
http://solution.3m.com/wps/portal/3m/en_us/AdhesivesForElectronics/Home/
[36] Mukho padhyay, R. “When PDMS isn’t the best”, Anal. Chem. 79, 3248-3253(2007).
[37] Cai, D. K. &; Neyer, A. “Cost-effective waveguide integration method for large-scale electrical-optical-circuit-board production. Electron”, Lett. 46, 581-583(2010).
[38] Owen, M. J. “Why silicones behave funny”, Chem Tech, 11, 288-292 (1981).
[39] Wang, C., Hirst, L. S. &; Winston, R. “Optical design and efficiency improvementfor organic luminescent solar concentrators”, Proc. of SPIE, 8124, 81240O-1-81240O-10 (2011).
[40] Thomas, W. R., Drake, J. M. &; Lesiecki, M. L. “Light transport in planarluminescent solar concentrators: the role of matrix losses”, Appl. Opt. 22, 3440-3450 (1983).
[41] Kastelijn, M. J., Bastiaansen, C. W. M. &; Debije, M. G. “Influence of waveguide material on light emission in luminescent solar concentrators”, Opt. Mat. 32, 1720-1722 (2009).
[42] Dlutowski, J., Cardenas-Valencia, A. M., Fries, D. &; Langebrake, L. “Refractive index determination of transparent polymers: experimental setup for multi-wavelength determination and calculation at specific frequencies using group contribution theory”, J. Chem. Educ. 83, 1867-1870 (2006).
[43] Wang, M. et al. “PDMS surface modification in the application of waveguide claddings for evanescent field sensing”, Proc. of SPIE, 7593, 759317-1-759317-9 (2010).
[44] From Massachusetts Institute of Technology:
http://www.mit.edu/~6.777/matprops/pdms.htm
[45] Neyer, A. et al. “Electrical-optical circuit board using polysiloxane optical waveguide layer”, Proceeding of 55th Electronic Components &; Technology Conference, 246-250 (2005).
[46] Lee, J. N., Park, C. &; Whitesides, M. “Solvent compatibility of Poly(dimethylsiloxane)-based microfluidic devices”, Anal. Chem.75, 6544-6554 (2003).
[47] Zhang, M. et al. “A simple method for fabricating multi-layer PDMS structures for 3D microfluidic”, chips. Lab. Chip. 10, 1199-1203 (2010).
[48] Yang, H. Y., Zhu, S. K. &; Pan, N., “Studying the mechanisms of Titanium Dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme”, J. Appl. Polym. Sci. 92, 3201-3210 (2004).
[49] Xu, Q. J., Zhang, S. Y. &; Wei, D. Q., “UV scattering characteristics of TiO2 particle based on Mie light scattering theory”, Chinese J. of Luminescence 3, 409-412 (2009).
[50] Martin A. Green1, Keith Emery2, Yoshihiro Hishikawa3 et al. “Dunlop Solar cell efficiency tables”, (version 41) Prog. Photovolt: Res. Appl.; 21:1–11(2013)
[51] From hitachi high-technology, Inc:
http://www.hitachi-hitec.com
[52] From PerkinElmer:
http://www.perkinelmer.com/.
[53] From Labspher, Inc:
http://www.labsphere.com/tecdocs.aspx\
[54] Wu, C.C., C.I. Wu, J.C. Sturm, and A. Kahn, “Surface modification of indium tin oxide by plasma treatment: An effective method to improve the efficiency, brightness, and reliability of organic light emitting devices”, Applied Physics Letters. 70,11,1348-1350.( 1997)
[55] Moliton, A. and J.-M. Nunzi, “How to model the behaviour of organic photovoltaic cells”, Polymer International.55.6.583-600.( 2006)
[56] From KLA_Tencor, Inc:
http://www.kla-tencor.com/surface-profiling/alpha-step-iq.html
[57] TracePro(Lambda Research Corp.) on-line Help
[58] Jonsson, J. C., Lee, E. S. &; Rubin, M. ‘Light-scattering properties of a woven shade-screen material used for daylighting and solar heat-gain control”, Proc. Of SPIE, 7065, 70650R-1-70650R-7 (2008).
[59] Zheng, Z. R., Zhou, J. &; Gu, P. “Roughness characterization of well-polished surfaces by measurements of light scattering distribution”, Optica Applicata, XL, 811-818 (2010).
[60] Pfisterer, R. N. “Approximated scatter models for stray light analysis”, Optics &; Photonics News, 16-17 (2011).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top