|
1. Yang, Y.; Leong, K. W., Nanoscale surfacing for regenerative medicine. Wires. Nanomed. Nanobi. 2010, 2, 478-495. 2. Takada, Y.; Ye, X. J.; Simon, S., The integrins. Genome Biol. 2007, 8, 215. 3. Pan, H. A.; Hung, Y. C.; Sui, Y. P.; Huang, G. S., Topographic control of the growth and function of cardiomyoblast H9c2 cells using nanodot arrays. Biomaterials 2012, 33, 20-28. 4. Park, J. K.; Kim, Y. J.; Yeom, J.; Jeon, J. H.; Yi, G. C.; Je, J. H.; Hahn, S. K., The Topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv. Mater. 2010, 22, 4857-4861. 5. Zaveri, T. D.; Dolgova, N. V.; Chu, B. H.; Lee, J. Y.; Wong, J. E.; Lele, T. P.; Ren, F.; Keselowsky, B. G., Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials 2010, 31, 2999-3007. 6. Zhao, L. Z.; Hu, L. S.; Huo, K. F.; Zhang, Y. M.; Wu, Z. F.; Chu, P. K., Mechanism of cell repellence on quasi-aligned nanowire arrays on Ti alloy. Biomaterials 2010, 31, 8341-8349. 7. Park, J.; Bauer, S.; Schlegel, K. A.; Neukam, F. W.; von der Mark, K.; Schmuki, P., TiO2 nanotube surfaces: 15 nm - an optimal length scale of surface topography for cell adhesion and differentiation. Small 2009, 5, 666-671. 8. Biggs, M. J. P.; Richards, R. G.; Gadegaard, N.; Wilkinson, C. D. W.; Dalby, M. J., Regulation of implant surface cell adhesion: Characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J. Orthop. Res. 2007, 25, 273-282. 9. Hart, A.; Gadegaard, N.; Wilkinson, C. D. W.; Oreffo, R. O. C.; Dalby, M. J., Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography. J. Mater. Sci. Mater. Med. 2007, 18, 1211-1218. 10. Liliensiek, S. J.; Wood, J. A.; Yong, J. A.; Auerbach, R.; Nealey, P. F.; Murphy, C. J., Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 2010, 31, 5418-5426. 11. Xie, J. W.; MacEwan, M. R.; Ray, W. Z.; Liu, W. Y.; Siewe, D. Y.; Xia, Y. N., Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applications. Acs Nano 2010, 4, 5027-5036. 12. Vicente-Manzanares M.; Choi C. K.; Horwitz A. R., Integrins in cell migration – the actin connection. J. Cell Sci. 2009, 122, 199-206. 13. Sherratt, J. A.; Dallon, J. C., Theoretical models of wound healing: past successes and future challenges. C. R. Biol 2002, 325, 557-564. 14. Coolen, N. A.; Schouten, K. C. W. M.; Boekema, B. K. H. L.; Middelkoop, E.; Ulrich, M. M. W., Wound healing in a fetal, adult, and scar tissue model: A comparative study. Wound. Repair. Regen. 2010, 18, 291-301. 15. Lee, J. W.; Juliano, R. L., Alpha 5 beta 1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. Mol. Biol. Cell 2000, 11, 1973-1987. 16. Popova, S. N.; Barczyk, M.; Tiger, C. F.; Beertsen, W.; Zigrino, P.; Aszodi, A.; Miosge, N.; Forsberg, E.; Gullberg, D., Alpha 11 beta 1 integrin-dependent regulation of periodontal ligament function in the erupting mouse incisor. Mol. Cell. Biol. 2007, 27, 4306-4316. 17. Huttenlocher, A.; Horwitz, A. R., Integrins in Cell Migration. Cold Spring Harb Perspect. Bio. 2011, 3, a005074 18. Sawhney, R.S.; Sharma, B.; Humphrey, L. E.; Brattain, M. G., Integrin α2 and extracellular signal-regulated kinase are functionally linked in highly malignant autocrine transforming growth factor-α-driven colon cancer cells. J. Biol. Chem.2003, 278, 19861–19869. 19. Sawhney, R.S.; Cookson, M.M.; Omar, Y.; Hauser, J.; Brattain, M. G., Integrin alpha2-mediated ERK and calpain activation play a critical role in cell adhesion and motility via focal adhesion kinase signaling: identification of a novel signaling pathway. J. Biol. Chem. 2006, 281, 8497-510. 20. Teranishi, S.; Kimura, K.; Nishida, T., Role of formation of an ERK-FAK-paxillin complex in migration of human corneal epithelial cells during wound closure in vitro. Invest Ophthalmol Vis Sci. 2009, 12, 5464-5652. 21. Martinesi, M.; Bruni, S.; Stio, M.; Treves, C.; Bacci, T.; Borgioli, F., Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures. J. Biomed. Mater. Res. A 2007, 80A, 131-145. 22. Cieślik, M.; Engvall, K.; Pan, J.; Kotarba, A., Silane–parylene coating for improving corrosion resistance of stainless steel 316L implant material. Corros Sci. 2011, 53, 296-301. 23. Okazaki, Y.; Tateishi, T.; Ito, Y., Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films. Mater. Trans. 1997, 38, 78-84. 24. Cadosch, D.; Chan, E.; Gautschi, O. P.; Simmen, H. P.; Filgueira, L., Bio-corrosion of stainless steel by osteoclasts-in vitro evidence. J. Orthop. Res. 2009, 27, 841-846. 25. Malheiro, V. N.; Spear, R. L.; Brooks, R. A.; Markaki, A. E., Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a Magneto-Mechanically Actuated Fibrous Scaffold. Biomaterials 2011, 32, 6883-6892. 26. Misra, R. D. K.; Thein-Han, W. W.; Pesacreta, T. C.; Hasenstein, K. H.; Somani, M. C.; Karjalainen, L. P., Favorable Modulation of Pre-Osteoblast Response to Nanograined/Ultrafine-grained Structures in Austenitic Stainless Steel. Adv. Mater. 2009, 21, 1280-1285. 27. Dey, A.; Nandi, S. K.; Kundu, B.; Kumar, C.; Mukherjee, P.; Roy, S.; Mukhopadhyay, A. K.; Sinha, M. K.; Basu, D., Evaluation of hydroxyapatite and beta-tri calcium phosphate microplasma spray coated pin intra-medullary for bone repair in a rabbit model. Ceram. Int. 2011, 37, 1377-1391. 28. Aparicio, C.; Rodriguez, D.; Gil, F. J., Variation of roughness and adhesion strength of deposited apatite layers on titanium dental implants. Mat. Sci. Eng. C-Mater. 2011, 31, 320-324. 29. Rokkum, M.; Reigstad, A.; Johansson, C. B.; Albrektsson, T., Tissue reactions adjacent to well-fixed hydroxyapatite-coated acetabular cups - Histopathology of ten specimens retrieved at reoperation after 0.3 to 5.8 years. J. Bone Joint Surg. Br 2003, 85B, 440-447. 30. Oh, S.; Brammer K. S.; Li, Y. S.; Teng, D.; Engler, A. J.; Chien, S.; Jin, S., Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 2009, 106, 2130-2135. 31. Brammer, K. S.; Oh, S.; Gallagher, J. O.; Jin, S., Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano lett 2008, 8, 786-793. 32. Lim, J. Y.; Dreiss, A. D.; Zhou, Z. Y.; Hansen, J. C.; Siedlecki, C. A.; Hengstebeck, R. W.; Cheng, J.; Winograd, N.; Donahue, H. J., The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 2007, 28, 1787-1797. 33. Olivares-Navarrete, R.; Raz, P.; Zhao, G.; Chen, J.; Wieland, M.; Cochran, D. L.; Chaudhri, R. A.; Ornoy, A.; Boyan, B. D.; Schwartz, Z., Integrin alpha 2 beta 1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc. Natl. Acad. Sci. USA 2008, 105, 15767-15772. 34. Martin, F.; Del Frari, D.; Cousty, J.; Bataillon, C., Self-organisation of nanoscaled pores in anodic oxide overlayer on stainless steels. Electrochim. Acta 2009, 54, 3086-3091. 35. Cetrullo, S.; Facchini, A.; Stanic, I.; Tantini, B.; Pignatti, C.; Caldarera, C.; Flamigni, F., Difluoromethylornithine inhibits hypertrophic, pro-fibrotic and pro-apoptotic actions of aldosterone in cardiac cells. Amino acids 2010, 38, 525-531. 36. Forte, G.; Minieri, M.; Cossa, P.; Antenucci, D.; Sala, M.; Gnocchi, V.; Fiaccavento, R.; Carotenuto, F.; De Vito, P.; Baldini, P. M.; Prat, M.; Di Nardo, P., Hepatocyte growth factor effects on mesenchymal stem cells: Proliferation, migration, and differentiation. Stem Cells 2006, 24, 23-33. 37. Pan, H. A.; Hung, Y. C.; Su, C. W.; Tai, S. M.; Chen, C. H.; Ko, F. H.; Huang, G. S., A Nanodot array modulates cell adhesion and induces an apoptosis-like abnormality in NIH-3T3 Cells. Nanoscale Res. Lett. 2009, 4, 903-912. 38. Zaidel-Bar, R.; Ballestrem, C.; Kam, Z.; Geiger, B., Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 2003, 116, 4605-4613. 39. Barczyk, M.; Carracedo, S.; Gullberg, D., Integrins. Cell Tissue Res. 2010, 339, 269-280. 40. Yousaf, M. N., Model substrates for studies of cell mobility. Curr. Opin. Chem. Biol. 2009, 13, 697-704. 41. Ben-Ze'ev, A.; Shtutman, M.; Zhurinsky, J., The integration of cell adhesion with gene expression: the role of beta-catenin. Exp. Cell. Res. 2000, 261, 75-82. 42. Hu, J.; Tian, J. H.; Shi, J.; Zhang, F.; He, D. L.; Liu, L.; Jung, D. J.; Bai, J. B.; Chen, Y., Cell culture on AAO nanoporous substrates with and without geometry constrains. Microelectron Eng. 2011, 88, 1714-1717. 43. Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blummel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P., Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 2004, 5, 383-388. 44. Huang, J. H.; Grater, S. V.; Corbellinl, F.; Rinck, S.; Bock, E.; Kemkemer, R.; Kessler, H.; Ding, J. D.; Spatz, J. P., Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009, 9, 1111-1116. 45. Schvartzman, M.; Palma, M.; Sable, J.; Abramson, J.; Hu, X.; Sheetz, M. P.; Wind, S. J., Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 2011, 11, 1306-1312. 46. Schmidt, S.; Friedl, P., Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res. 2010, 339, 83-92. 47. Biggs, M. J. P.; Richards, R. G.; Dalby, M. J., Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine 2010, 6, 619-633. 48. Gasiorowski, J. Z.; Liliensiek, S. J.; Russell, P.; Stephan, D. A.; Nealey, P. F.; Murphy, C. J., Alterations in gene expression of human vascular endothelial cells associated with nanotopographic cues. Biomaterials 2010, 31, 8882-8888. 49. Worth, D. C.; Hodivala-Dilke, K.; Robinson, S. D.; King, S. J.; Morton, P. E.; Gertler, F. B.; Humphries, M. J.; Parsons, M., Alpha v beta 3 integrin spatially regulates VASP and RIAM to control adhesion dynamics and migration. J. Cell Biol. 2010, 189, 369-383. 50. Lavenus, S.; Berreur, M.; Trichet, V.; Pilet, P.; Louarn, G.; Layrolle, P., Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores. Eur. Cell Mater. 2011, 22, 84-96. 51. Erikson, D. W.; Burghardt, R. C.; Bayless, K. J.; Johnson, G. A., Secreted phosphoprotein 1 (SPP1, Osteopontin) binds to integrin alpha v beta 6 on porcine trophectoderm cells and integrin alpha v beta 3 on uterine luminal epithelial cells, and promotes trophectoderm cell adhesion and migration. Biol. Reprod. 2009, 81, 814-825. 52. Eslami, A.; Gallant-Behm, C. L.; Hart, D. A.; Wiebe, C.; Honardoust, D.; Gardner, H.; Hakkinen, L.; Larjava, H. S., Expression of Integrin alpha v beta 6 and TGF-beta in Scarless vs Scar-forming Wound Healing. J. Histochem. Cytochem. 2009, 57, 543-557. 53. Lobert, V. H.; Brech, A.; Pedersen, N. M.; Wesche, J.; Oppelt, A.; Malerod, L.; Stenmark, H., Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev. Cell 2010, 19, 148-159. 54. Pezzatini, S.; Morbidelli, L.; Solito, R.; Paccagnini, E.; Boanini, E.; Bigi, A.; Ziche, M., Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone 2007, 41, 523-534. 55. Reynolds, L. E.; Conti, F. J.; Silva, R.; Robinson, S. D.; Iyer, V.; Rudling, R.; Cross, B.; Nye, E.; Hart, I. R.; DiPersio, C. M.; Hodivala-Dilke, K. M., Alpha 3 beta 1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J. Clin. Invest. 2008, 118, 965-974. 56. Sadok, A.; Pierres, A.; Dahan, L.; Prevot, C.; Lehmann, M.; Kovacic, H., NADPH Oxidase 1 controls the persistence of directed cell migration by a rho-dependent switch of alpha 2/alpha 3 integrins. Mol. Cell. Biol. 2009, 29, 3915-3928. 57. Singh, P.; Chen, C.; Pal-Ghosh, S.; Stepp, M. A.; Sheppard, D.; Van De Water, L., loss of integrin alpha 9 beta 1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J. Invest. Dermatol. 2009, 129, 217-228. 58. Webb, D.J.; Donais, K.; Whitmore, L. A.; Thomas, S. M.; Turner, C. E.; Parsons, J. T.; Horwitz, A. F., FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell. Biol. 2004, 6, 154-161. 59. Park, J.; Bauer, S.; von, der, Mark, K.; Schmuki, P., Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007, 7, 1686-1691. 60. Jeon, Y. K.; Jang, Y. H.; Yoo, D. R.; Kim, S. N.; Lee, S. K.; Nam, M. J., Mesenchymal stem cells' interaction with skin: Wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen. 2010, 18, 655-661. 61. Arnold, M.; Hirschfeld-Warneken, V. C.; Lohmuller, T.; Heil, P.; Blummel, J.; Cavalcanti-Adam, E. A.; Lopez-Garcia, M.; Walther, P.; Kessler, H.; Geiger, B.; Spatz, J. P., Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 2008, 8, 2063-2069. 62. Park, J.; Bauer, S.; Schmuki, P.; von der Mark, K., Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 2009, 9, 3157-3164.
|