跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/19 03:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:梁嘉佑
研究生(外文):Liang, Jia-You
論文名稱:奈米孔洞拓樸結構透過調節integrins和ERK的表現
論文名稱(外文):Nanopore topology controls cell migration through the regulation of integrins and ERK in fibroblasts
指導教授:黃國華黃國華引用關係
指導教授(外文):Huang, Gue-Wha Steven
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:45
中文關鍵詞:奈米孔洞不鏽鋼細胞移動
外文關鍵詞:NanoporesStainless steelCell migration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:155
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Integrin調控focal adhesion的形成對於細胞貼附至外在環境上是不可或缺的,奈米結構可控制許多種細胞行為,例如:細胞的貼附與移動。然而,表面結構影響細胞行為的反應機制目前還未研究透徹。本研究將探討纖維母細胞在40至210奈米的316L不鏽鋼奈米孔洞上的行為表現,包括:細胞的生長、移動能力與integrins和ERK的調控。
經實驗結果發現纖維母細胞在直徑40和75奈米孔洞結構上培養24小時後,可促進細胞增生、貼附及良好的細胞型態。我們更進一步使用qPCR分析integrin於奈米孔洞上的表現,其結果顯示integrin會受到空間及時間性的調控。西方墨點法的分析顯示在40和75奈米上培養24小時後,vinculin,β-tubulin,integrin αV和α2會有明顯的表現。而ERK1/2的磷酸化在185和210奈米上培養12和24小時後,其表現量明顯較其它尺寸低。最後利用wound healing分析細胞的移動,當細胞在40和75奈米孔洞上培養12小時後,顯示有較好的移動能力。
實驗結果顯示40和75奈米孔洞結構可促進細胞的貼附、移動並調控integrin、ERK和貼附相關分子的表現。我們目前的研究發現奈米結構可藉由空間及時間的影響,來控制細胞行為與分子的表現,而這些實驗參數則可用以改善不鏽鋼植入物的生物相容性。

The integrin-mediated formation of focal adhesions is essential for the adhesion of migrating cells to a substrate. The nanotopography controls the cell’s behaviors, such as cell adhesion and migration. However, the mechanisms responsible for topology-mediated cellular functions are not fully understood. A variety of nanopores fabricated on 316L stainless steel were applied to investigate the effects of spatial control on the growth and function of fibroblasts, the temporal regulation of integrins and ERK, and their effects on the migration. The fibroblast cell line NIH 3T3 was cultured on nanopore surfaces with pore diameters ranging from 40 to 210 nm. The 40 and 75 nm nanopores enhanced cell proliferation and focal adhesion formation after 24 h incubation, with a large cell spreading area was observed. Integrin expression was analyzed by qPCR, which showed their spatial and temporal regulation by the nanopores. Western blot analysis verified high levels of expression of vinculin, β-tubulin, integrin αV, and integrin α2 for cells cultured on 40 and 75 nm nanopores starting from 24 h. The protein expression of pERK1/2 was greatly attenuated in cells grown on 185 and 210 nm at 12 and 24 h. Significantly enhanced cell migration was also observed for fibroblasts grown on 40 and 75 nm nanopores after 12 h of incubation in a wound healing assay. In summary, the 40 and 75 nm nanopore surfaces promoted cell adhesion and migration in fibroblasts by controlling the temporal expression of integrins and focal adhesion molecules. We found that the nanostructure could control cell behaviors and molecular expressions by spatial and temporal regulation. The current study provides insight to improve the design of stainless steel implants and parameters that affect biocompatibility.
1. Introduction 1
2. Materials and methods 5
2.1 CELL CULTURE 5
2.2 CHEMICALS 5
2.3 FABRICATION OF NANOPORE SURFACES 5
2.4 MORPHOLOGICAL OBSERVATION BY SCANNING ELECTRON MICROSCOPY (SEM) 6
2.5 IMMUNOSTAINING 7
2.6 QUANTITATIVE REAL-TIME PCR 7
2.7 WESTERN BLOT 10
2.8 WOUND HEALING ASSAY 10
2.8 STATISTICS 11
3. Results 12
3.1 FABRICATION OF NANOPOROUS SURFACES 12
3.2 NANOPORES MODULATED CELL MORPHOLOGY AND GROWTH OF FIBROBLAST 15
3.3NANOSTRUCTURE MODULATED CELL ADHESION AND CYTOSKELETON OF FIBROBLASTS 20
3.4 INTEGRINS EXPRESSION OF FIBROBLASTS ON VARIED NANOPORE SURFACE 25
3.5 PROTEIN EXPRESSION OF GENES ASSOCIATED WITH CELL ADHESIONS 28
3.6 VALIDATION OF MIGRATION BY WOUND HEALING EXPERIMENT 32
4. Discussion 35
5. Conclusions 39
References 41
1. Yang, Y.; Leong, K. W., Nanoscale surfacing for regenerative medicine. Wires. Nanomed. Nanobi. 2010, 2, 478-495.
2. Takada, Y.; Ye, X. J.; Simon, S., The integrins. Genome Biol. 2007, 8, 215.
3. Pan, H. A.; Hung, Y. C.; Sui, Y. P.; Huang, G. S., Topographic control of the growth and function of cardiomyoblast H9c2 cells using nanodot arrays. Biomaterials 2012, 33, 20-28.
4. Park, J. K.; Kim, Y. J.; Yeom, J.; Jeon, J. H.; Yi, G. C.; Je, J. H.; Hahn, S. K., The Topographic effect of zinc oxide nanoflowers on osteoblast growth and osseointegration. Adv. Mater. 2010, 22, 4857-4861.
5. Zaveri, T. D.; Dolgova, N. V.; Chu, B. H.; Lee, J. Y.; Wong, J. E.; Lele, T. P.; Ren, F.; Keselowsky, B. G., Contributions of surface topography and cytotoxicity to the macrophage response to zinc oxide nanorods. Biomaterials 2010, 31, 2999-3007.
6. Zhao, L. Z.; Hu, L. S.; Huo, K. F.; Zhang, Y. M.; Wu, Z. F.; Chu, P. K., Mechanism of cell repellence on quasi-aligned nanowire arrays on Ti alloy. Biomaterials 2010, 31, 8341-8349.
7. Park, J.; Bauer, S.; Schlegel, K. A.; Neukam, F. W.; von der Mark, K.; Schmuki, P., TiO2 nanotube surfaces: 15 nm - an optimal length scale of surface topography for cell adhesion and differentiation. Small 2009, 5, 666-671.
8. Biggs, M. J. P.; Richards, R. G.; Gadegaard, N.; Wilkinson, C. D. W.; Dalby, M. J., Regulation of implant surface cell adhesion: Characterization and quantification of S-phase primary osteoblast adhesions on biomimetic nanoscale substrates. J. Orthop. Res. 2007, 25, 273-282.
9. Hart, A.; Gadegaard, N.; Wilkinson, C. D. W.; Oreffo, R. O. C.; Dalby, M. J., Osteoprogenitor response to low-adhesion nanotopographies originally fabricated by electron beam lithography. J. Mater. Sci. Mater. Med. 2007, 18, 1211-1218.
10. Liliensiek, S. J.; Wood, J. A.; Yong, J. A.; Auerbach, R.; Nealey, P. F.; Murphy, C. J., Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 2010, 31, 5418-5426.
11. Xie, J. W.; MacEwan, M. R.; Ray, W. Z.; Liu, W. Y.; Siewe, D. Y.; Xia, Y. N., Radially Aligned, Electrospun Nanofibers as Dural Substitutes for Wound Closure and Tissue Regeneration Applications. Acs Nano 2010, 4, 5027-5036.
12. Vicente-Manzanares M.; Choi C. K.; Horwitz A. R., Integrins in cell migration – the actin connection. J. Cell Sci. 2009, 122, 199-206.
13. Sherratt, J. A.; Dallon, J. C., Theoretical models of wound healing: past successes and future challenges. C. R. Biol 2002, 325, 557-564.
14. Coolen, N. A.; Schouten, K. C. W. M.; Boekema, B. K. H. L.; Middelkoop, E.; Ulrich, M. M. W., Wound healing in a fetal, adult, and scar tissue model: A comparative study. Wound. Repair. Regen. 2010, 18, 291-301.
15. Lee, J. W.; Juliano, R. L., Alpha 5 beta 1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. Mol. Biol. Cell 2000, 11, 1973-1987.
16. Popova, S. N.; Barczyk, M.; Tiger, C. F.; Beertsen, W.; Zigrino, P.; Aszodi, A.; Miosge, N.; Forsberg, E.; Gullberg, D., Alpha 11 beta 1 integrin-dependent regulation of periodontal ligament function in the erupting mouse incisor. Mol. Cell. Biol. 2007, 27, 4306-4316.
17. Huttenlocher, A.; Horwitz, A. R., Integrins in Cell Migration. Cold Spring Harb Perspect. Bio. 2011, 3, a005074
18. Sawhney, R.S.; Sharma, B.; Humphrey, L. E.; Brattain, M. G., Integrin α2 and extracellular signal-regulated kinase are functionally linked in highly malignant autocrine transforming growth factor-α-driven colon cancer cells. J. Biol. Chem.2003, 278, 19861–19869.
19. Sawhney, R.S.; Cookson, M.M.; Omar, Y.; Hauser, J.; Brattain, M. G., Integrin alpha2-mediated ERK and calpain activation play a critical role in cell adhesion and motility via focal adhesion kinase signaling: identification of a novel signaling pathway. J. Biol. Chem. 2006, 281, 8497-510.
20. Teranishi, S.; Kimura, K.; Nishida, T., Role of formation of an ERK-FAK-paxillin complex in migration of human corneal epithelial cells during wound closure in vitro. Invest Ophthalmol Vis Sci. 2009, 12, 5464-5652.
21. Martinesi, M.; Bruni, S.; Stio, M.; Treves, C.; Bacci, T.; Borgioli, F., Biocompatibility evaluation of surface-treated AISI 316L austenitic stainless steel in human cell cultures. J. Biomed. Mater. Res. A 2007, 80A, 131-145.
22. Cieślik, M.; Engvall, K.; Pan, J.; Kotarba, A., Silane–parylene coating for improving corrosion resistance of stainless steel 316L implant material. Corros Sci. 2011, 53, 296-301.
23. Okazaki, Y.; Tateishi, T.; Ito, Y., Corrosion resistance of implant alloys in pseudo physiological solution and role of alloying elements in passive films. Mater. Trans. 1997, 38, 78-84.
24. Cadosch, D.; Chan, E.; Gautschi, O. P.; Simmen, H. P.; Filgueira, L., Bio-corrosion of stainless steel by osteoclasts-in vitro evidence. J. Orthop. Res. 2009, 27, 841-846.
25. Malheiro, V. N.; Spear, R. L.; Brooks, R. A.; Markaki, A. E., Osteoblast and monocyte responses to 444 ferritic stainless steel intended for a Magneto-Mechanically Actuated Fibrous Scaffold. Biomaterials 2011, 32, 6883-6892.
26. Misra, R. D. K.; Thein-Han, W. W.; Pesacreta, T. C.; Hasenstein, K. H.; Somani, M. C.; Karjalainen, L. P., Favorable Modulation of Pre-Osteoblast Response to Nanograined/Ultrafine-grained Structures in Austenitic Stainless Steel. Adv. Mater. 2009, 21, 1280-1285.
27. Dey, A.; Nandi, S. K.; Kundu, B.; Kumar, C.; Mukherjee, P.; Roy, S.; Mukhopadhyay, A. K.; Sinha, M. K.; Basu, D., Evaluation of hydroxyapatite and beta-tri calcium phosphate microplasma spray coated pin intra-medullary for bone repair in a rabbit model. Ceram. Int. 2011, 37, 1377-1391.
28. Aparicio, C.; Rodriguez, D.; Gil, F. J., Variation of roughness and adhesion strength of deposited apatite layers on titanium dental implants. Mat. Sci. Eng. C-Mater. 2011, 31, 320-324.
29. Rokkum, M.; Reigstad, A.; Johansson, C. B.; Albrektsson, T., Tissue reactions adjacent to well-fixed hydroxyapatite-coated acetabular cups - Histopathology of ten specimens retrieved at reoperation after 0.3 to 5.8 years. J. Bone Joint Surg. Br 2003, 85B, 440-447.
30. Oh, S.; Brammer K. S.; Li, Y. S.; Teng, D.; Engler, A. J.; Chien, S.; Jin, S., Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA 2009, 106, 2130-2135.
31. Brammer, K. S.; Oh, S.; Gallagher, J. O.; Jin, S., Enhanced cellular mobility guided by TiO2 nanotube surfaces. Nano lett 2008, 8, 786-793.
32. Lim, J. Y.; Dreiss, A. D.; Zhou, Z. Y.; Hansen, J. C.; Siedlecki, C. A.; Hengstebeck, R. W.; Cheng, J.; Winograd, N.; Donahue, H. J., The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography. Biomaterials 2007, 28, 1787-1797.
33. Olivares-Navarrete, R.; Raz, P.; Zhao, G.; Chen, J.; Wieland, M.; Cochran, D. L.; Chaudhri, R. A.; Ornoy, A.; Boyan, B. D.; Schwartz, Z., Integrin alpha 2 beta 1 plays a critical role in osteoblast response to micron-scale surface structure and surface energy of titanium substrates. Proc. Natl. Acad. Sci. USA 2008, 105, 15767-15772.
34. Martin, F.; Del Frari, D.; Cousty, J.; Bataillon, C., Self-organisation of nanoscaled pores in anodic oxide overlayer on stainless steels. Electrochim. Acta 2009, 54, 3086-3091.
35. Cetrullo, S.; Facchini, A.; Stanic, I.; Tantini, B.; Pignatti, C.; Caldarera, C.; Flamigni, F., Difluoromethylornithine inhibits hypertrophic, pro-fibrotic and pro-apoptotic actions of aldosterone in cardiac cells. Amino acids 2010, 38, 525-531.
36. Forte, G.; Minieri, M.; Cossa, P.; Antenucci, D.; Sala, M.; Gnocchi, V.; Fiaccavento, R.;
Carotenuto, F.; De Vito, P.; Baldini, P. M.; Prat, M.; Di Nardo, P., Hepatocyte growth factor
effects on mesenchymal stem cells: Proliferation, migration, and differentiation. Stem Cells
2006, 24, 23-33.
37. Pan, H. A.; Hung, Y. C.; Su, C. W.; Tai, S. M.; Chen, C. H.; Ko, F. H.; Huang, G. S., A Nanodot array modulates cell adhesion and induces an apoptosis-like abnormality in NIH-3T3 Cells. Nanoscale Res. Lett. 2009, 4, 903-912.
38. Zaidel-Bar, R.; Ballestrem, C.; Kam, Z.; Geiger, B., Early molecular events in the assembly of matrix adhesions at the leading edge of migrating cells. J. Cell Sci. 2003, 116, 4605-4613.
39. Barczyk, M.; Carracedo, S.; Gullberg, D., Integrins. Cell Tissue Res. 2010, 339, 269-280.
40. Yousaf, M. N., Model substrates for studies of cell mobility. Curr. Opin. Chem. Biol. 2009, 13, 697-704.
41. Ben-Ze'ev, A.; Shtutman, M.; Zhurinsky, J., The integration of cell adhesion with gene expression: the role of beta-catenin. Exp. Cell. Res. 2000, 261, 75-82.
42. Hu, J.; Tian, J. H.; Shi, J.; Zhang, F.; He, D. L.; Liu, L.; Jung, D. J.; Bai, J. B.; Chen, Y., Cell culture on AAO nanoporous substrates with and without geometry constrains. Microelectron Eng. 2011, 88, 1714-1717.
43. Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blummel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P., Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 2004, 5, 383-388.
44. Huang, J. H.; Grater, S. V.; Corbellinl, F.; Rinck, S.; Bock, E.; Kemkemer, R.; Kessler, H.; Ding, J. D.; Spatz, J. P., Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009, 9, 1111-1116.
45. Schvartzman, M.; Palma, M.; Sable, J.; Abramson, J.; Hu, X.; Sheetz, M. P.; Wind, S. J., Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett. 2011, 11, 1306-1312.
46. Schmidt, S.; Friedl, P., Interstitial cell migration: integrin-dependent and alternative adhesion mechanisms. Cell Tissue Res. 2010, 339, 83-92.
47. Biggs, M. J. P.; Richards, R. G.; Dalby, M. J., Nanotopographical modification: a regulator of cellular function through focal adhesions. Nanomedicine 2010, 6, 619-633.
48. Gasiorowski, J. Z.; Liliensiek, S. J.; Russell, P.; Stephan, D. A.; Nealey, P. F.; Murphy, C. J., Alterations in gene expression of human vascular endothelial cells associated with nanotopographic cues. Biomaterials 2010, 31, 8882-8888.
49. Worth, D. C.; Hodivala-Dilke, K.; Robinson, S. D.; King, S. J.; Morton, P. E.; Gertler, F. B.; Humphries, M. J.; Parsons, M., Alpha v beta 3 integrin spatially regulates VASP and RIAM to control adhesion dynamics and migration. J. Cell Biol. 2010, 189, 369-383.
50. Lavenus, S.; Berreur, M.; Trichet, V.; Pilet, P.; Louarn, G.; Layrolle, P., Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores. Eur. Cell Mater. 2011, 22, 84-96.
51. Erikson, D. W.; Burghardt, R. C.; Bayless, K. J.; Johnson, G. A., Secreted phosphoprotein 1 (SPP1, Osteopontin) binds to integrin alpha v beta 6 on porcine trophectoderm cells and integrin alpha v beta 3 on uterine luminal epithelial cells, and promotes trophectoderm cell adhesion and migration. Biol. Reprod. 2009, 81, 814-825.
52. Eslami, A.; Gallant-Behm, C. L.; Hart, D. A.; Wiebe, C.; Honardoust, D.; Gardner, H.; Hakkinen, L.; Larjava, H. S., Expression of Integrin alpha v beta 6 and TGF-beta in Scarless vs Scar-forming Wound Healing. J. Histochem. Cytochem. 2009, 57, 543-557.
53. Lobert, V. H.; Brech, A.; Pedersen, N. M.; Wesche, J.; Oppelt, A.; Malerod, L.; Stenmark, H., Ubiquitination of alpha 5 beta 1 integrin controls fibroblast migration through lysosomal degradation of fibronectin-integrin complexes. Dev. Cell 2010, 19, 148-159.
54. Pezzatini, S.; Morbidelli, L.; Solito, R.; Paccagnini, E.; Boanini, E.; Bigi, A.; Ziche, M., Nanostructured HA crystals up-regulate FGF-2 expression and activity in microvascular endothelium promoting angiogenesis. Bone 2007, 41, 523-534.
55. Reynolds, L. E.; Conti, F. J.; Silva, R.; Robinson, S. D.; Iyer, V.; Rudling, R.; Cross, B.; Nye, E.; Hart, I. R.; DiPersio, C. M.; Hodivala-Dilke, K. M., Alpha 3 beta 1 integrin-controlled Smad7 regulates reepithelialization during wound healing in mice. J. Clin. Invest. 2008, 118, 965-974.
56. Sadok, A.; Pierres, A.; Dahan, L.; Prevot, C.; Lehmann, M.; Kovacic, H., NADPH Oxidase 1 controls the persistence of directed cell migration by a rho-dependent switch of alpha 2/alpha 3 integrins. Mol. Cell. Biol. 2009, 29, 3915-3928.
57. Singh, P.; Chen, C.; Pal-Ghosh, S.; Stepp, M. A.; Sheppard, D.; Van De Water, L., loss of integrin alpha 9 beta 1 results in defects in proliferation, causing poor re-epithelialization during cutaneous wound healing. J. Invest. Dermatol. 2009, 129, 217-228.
58. Webb, D.J.; Donais, K.; Whitmore, L. A.; Thomas, S. M.; Turner, C. E.; Parsons, J. T.; Horwitz, A. F., FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell. Biol. 2004, 6, 154-161.
59. Park, J.; Bauer, S.; von, der, Mark, K.; Schmuki, P., Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett. 2007, 7, 1686-1691.
60. Jeon, Y. K.; Jang, Y. H.; Yoo, D. R.; Kim, S. N.; Lee, S. K.; Nam, M. J., Mesenchymal stem cells' interaction with skin: Wound-healing effect on fibroblast cells and skin tissue. Wound Repair Regen. 2010, 18, 655-661.
61. Arnold, M.; Hirschfeld-Warneken, V. C.; Lohmuller, T.; Heil, P.; Blummel, J.; Cavalcanti-Adam, E. A.; Lopez-Garcia, M.; Walther, P.; Kessler, H.; Geiger, B.; Spatz, J. P., Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 2008, 8, 2063-2069.
62. Park, J.; Bauer, S.; Schmuki, P.; von der Mark, K., Narrow window in nanoscale dependent activation of endothelial cell growth and differentiation on TiO2 nanotube surfaces. Nano Lett. 2009, 9, 3157-3164.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top