跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 12:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱維剛
研究生(外文):Chiu, Wei-Gang
論文名稱:以1,2,2,4-四甲基-1-氮-2-環戊烷作為先趨物利用電漿輔助化學氣相沉積法製備低介電碳氮化矽薄膜
論文名稱(外文):Low-k SiCxNy Films Prepared by Plasma- Enhanced Chemical Vapor Deposition Using Methyl-aza-2,2,4 Trimethylsilacyclopentane Precursor
指導教授:呂志鵬呂志鵬引用關係
指導教授(外文):Leu, Jih-perng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:73
中文關鍵詞:蝕刻終止層低介電薄膜碳氮化矽薄膜銅擴散阻障層
外文關鍵詞:etch stop layerlow-k filmSiCxNy filmCu diffusion barrier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究著重於低介電碳氮化矽薄膜之銅擴散阻障層性質探討。本研究利用電漿輔助化學氣相沉積法於13.56 MHz與0.3 W/cm2低電漿功率下使用單一先趨物1,2,2,4-四甲基-1-氮-2-環戊烷沉積低介電碳氮化矽薄膜,吾人係探討不同沉積溫度(25~300 oC)對於薄膜性質之影響。由Si-N-Si與Si-CH2-Si特徵出現可推測交聯反應發生,且Si-N-Si與Si-CH2-Si鍵結相對含量隨著沉積溫度增加而增加,顯示交聯性亦隨之增加。沉積溫度由25oC至300oC,密度由1.79上升至1.92 g/cm3,介電常數亦伴隨著由2.9增加至3.6。另外,低介電碳氮化矽薄膜的漏電流於1 MV/cm偏壓下隨著沉積溫度增加由1.70毕10-7下降至3.50毕10-9 A/cm2,且因為使用單一先趨物與低電漿功率,使得所有低介電碳氮化矽薄膜皆表現出蕭基 (Schottky) 漏電流傳導機制;此外,所有的低介電碳氮化矽薄膜之崩潰電壓皆高於2.5 MV/cm。於其他性質方面,經過400oC /4hrs嚴苛的熱處理後,所有的低介電碳氮化矽薄膜展現出優異的銅擴散阻障能力,銅擴散深度分別介於13到20 nm之間,且銅擴散阻障能力隨著沉積溫度的增加而增加。另外,所有的低介電碳氮化矽薄膜中,最好之彈性模數為16.7 GPa。
This work examines low-k silicon carbonitride (SiCxNy) films properties as Cu diffusion barrier. Low-k silicon carbonitride (SiCxNy) films with dielectric constant of 2.9–3.6 were prepared by RF (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) at 25 to 300oC under low power density of 0.3 W/cm2, using a single source precursor, N-methyl-aza-2,2,4-trimethylsilacyclopentane (MTSCP). The cross-linked structure could be formed on the emergence of Si-N-Si and Si-CH2-Si features, and features enhanced with increasing temperature. Density also rose from 1.79 to 1.92 g/cm3. The leakage current density was reduced from 1.70毕10-7 to 3.50毕10-9 A/cm2 at 1 MV/cm, upon increasing the deposition temperature from 25oC to 300oC. The conduction mechanism of the SiCxNy films all exhibited Schottky emission due to few charged defects by using a single precursor and lower plasma power density of 0.3 W/cm2. And all films showed a good breakdown strength >2.5 MV/cm. Moreover, these films displayed outstanding Cu diffusion depth, 13 to 20 nm after 400oC /4hrs annealing and the highest elastic modulus of 16.7 GPa.
摘 要 i
ABSTRACT ii
Acknowledgements iii
Contents iv
Table Captions vi
Figure Captions vii
Chapter 1 1
Introduction 1
1.1 Background 1
1.2 Overview 3
Chapter 2 4
Literature Review 4
2.1 Backend interconnects 4
2.1.1 Solutions to circuits design, and architectures solution 4
2.1.2 Solutions to materials solution 5
2.2 Effective dielectric constant 13
2.3 Fundamental theory of low-k dielectrics 16
2.3.1 Definition of dielectric constant 16
2.3.2 Polarization theory 16
2.3.3 Methods of reducing dielectric constant 18
2.4 Cu diffusion barrier and Etch stop layer 21
2.4.1 Introduction of Cu diffusion barrier /Etch stop layer 21
2.4.2 Historical evolution of Cu diffusion barrier /Etch stop layer 22
2.5 Instrument Methodologies 25
2.5.1 Bonding characterization (Fourier Transform Infrared Spectrum, FTIR) 25
2.5.2 Atomic compositions and bonding state analysis (X-ray Photoelectron Spectrometry, XPS) 27
2.5.3 Physical properties analysis (X-ray Reflectivity, XRR) 29
2.5.4 (Secondary Ion Mass Spectrometry, SIMS) 31
Chapter 3 33
Experimental 33
3.1 Material candidate 33
3.2 Sample preparation 35
3.3 Characterization of key properties 37
3.3.1 Chemical characteristics 37
3.3.2 Physical properties 37
3.3.3 Electrical properties 38
3.3.4 Mechanical strength 38
3.3.5 Cu diffusion profile 40
Chapter 4 42
Results and Discussion 42
4.1 Chemical characteristics of PECVD SiCxNy films 42
4.1.1 FTIR of PECVD SiCxNy films 42
4.1.2 XPS of PECVD SiCxNy films 46
4.2 Physical properties of PECVD SiCxNy films 51
4.3 Electrical properties of PECVD SiCxNy films 53
4.3.1 Dielectric constant of PECVD SiCxNy films 53
4.3.2 Leakage current of PECVD SiCxNy films 56
4.4 Mechanical strength of PECVD SiCxNy films 60
4.5 Cu diffusion profile of PECVD SiCxNy films 62
4.6 Etch selectivity of SiCxNy films against ILD layer 64
4.6 Film growth rate of SiCxNy films 65
Chapter 5 67
Conclusion 67
References 69
1.Y. Shioya, K. Maeda, T. Ishimaru, H. Ikakura, T. Masubuchi, T. Ohdaira and R. Suzuki, Jpn. J. Appl. Phys., 43, 2, (2004).
2.T. Usui, H. Miyajima, H. Masuda, K. Tabuchi, K. Watanabe, T. Hasegawa, and H. Shibata, Jpn. J. Appl. Phys., 45, 1570, (2006).
3.M. Tanaka, S. Saida, and Y. Tsunashima, J. Electrochem. Soc., 147, 2284, (2000).
4.J. M. Shieh, K. C. Tsai, and B. T. Dai, Appl. Phys. Lett., 81, 1294, (2002).
5.T. C. Wang, Y. L. Cheng, Y. L. Wang, T. E. Hsieh, G. J. Hwang, and C. F. Chen, Thin Solid Films, 498, 36 (2006).
6.I. Martin, M. Vetter, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla, Appl. Phys. Lett., 81, 4461 (2002).
7.S. M. Smith, T. Tighe, D. Convey, J. Quintero, and Y. Wei, Thin Solid Films, 516, 885 (2008).
8.H. Cui and P. A. Burke, J. Electrochem. Soc., 151, G795 (2004).
9.C. W. Chen, T. C. Chang, P. T. Liu, T. M. Tsai, H. C. Huang, J. M. Chen, C. H. Tseng, C. C. Liu, and T. Y. Tseng, Thin Solid Films, 447-448, 632 (2004).
10.N. Fainer, Y. Rumyantsev, M. Kosinova, E. Maximovski, V. Kesler, V. Kirienko, and F. Kuznetsov, Surf. Coat. Technol., 201, 9269 (2007).
11.E. Vassallo, A. Cremona, F. Ghezzi, F. Dellera, L. Laguardia, G. Ambrosone, and U. Coscia, Appl. Surf. Sci., 252, 7993 (2006).
12.S. G. Lee, Y. J. KIM, S. P. Lee, H. S. Oh, S. J. Lee, M. Kim, I. G. Kim, J. H. Kim, H. J. Shin, J. G. Hong, H. D. Lee, and H. K. Kang, Jpn. J. Appl. Phys., 40, 2663, (2001).
13.Y. H. Wang, M. R. Moitreyee, R. Kumar, L. Shen, K. Y. Zeng, J. W. Chai, J. S. Pan, Thin Solid Films, 460, 211 (2004).
14.J. Nakahira, S. Nagano, A. Gawase, Y. Ohashi, H. Shimizu, S. Chikaki, N. Oda, S. Kondo, S. Hasaka, and S. Saito, Jpn. J. Appl. Phys., 49, 05FD04 (2010).
15.G. E. Moore, Electronics, 38, 8 (1965).
16.J. Singh, Semiconductor Devices: Basic Principles, Chapter 10, John Wiley & Sons, New York (2001).
17.International Technology Roadmap for Semiconductor, Executive Summary, 2009 Edition, Semiconductor International Association (2009).
18.C. H. Jan, Proc. Int. 2003 Electron Devices Meeting, IEEE Press, Short Course (2003).
19.S. L. Teig, Proc. of the ‘02 international workshop on System-level interconnect prediction, ACM Press, 33 (2002).
20.K. Thumaty, and R. Lipsey, Designing ICs with the 'X' Architecture, Electronic Engineering Times, August 29 (2005).
21.R. C. Johnson, IBM commits to ultimate dielectric: air gaps, Electronic Engineering Times, May 7 (2007).
22.R. Daamen, P. H. L. Bancken,V. H. Nguyen, A. Humbert, G. J. A. M. Verheijden, and R. J. O. M. Hoofman, Microelectron. Eng., 84, 2177 (2007).
23.National Technology Roadmap for Semiconductors, 1997 Edition, Semiconductor Industry Association (1997).
24.P. T. Liu, T. C. Chang, Y. L. Yang, Y. F. Cheng and S. M. Sze, IEEE Trans. on Electron Devices, 47, 1733 (2000).
25.C, S. H. Riege, Microelectronics Reliability, 44, 195 (2004).
26.P. S. Ho, J. Leu, and W. W. Lee, Low Dielectric Constant Materials for IC Applications, Springer, New York (2002).
27.C. Case, Interconnect Working Group, ITRS 2010 summer conference, 14th July, San Francisco (2010).
28.S. O. Kasap, Principles of Electrical Engineering Materials and Devices, Chapter 7, McGraw-Hill, New York (1997).
29.P. Atkins, and J. de Paula, Atkins’ Physical Chemistry, 7th Edition, Oxford University Press, New York (2002).
30.K.J. Miller, H.B. Hollinger, J. Grebowicz, B. Wunderlich: Macromolecules, 23, 3855 (1990).
31.S.H. Pine: Organic Chemistry, 5th edn. (McGraw-Hill, New York 1987).
32.F. L. Wei, C. L. Gan, T. L. Tan, C. S. H. Riege, A. P. Marathe, J. J. Vlassak, and C. V. Thompson, J. Appl. Phys., 104, 023529 (2008).
33.T. Kropewnicki, K. Doan, B. Tang, and C. Bj‥orkman, J. Vac. Sci. Technol. A, 19, 1384 (2001).
34.I. Kume, M. Ueki, N. Inoue, J. Kawahara, N. Ikarashi, N. Furutake, S. Saitoh, and Y. Hayashi, Jpn. J. Appl. Phys., 50, 04DB02 (2011).
35.I. Martin, M. Vetter, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla, Appl. Phys.Lett., 81, 4461 (2002).
36.S. M. Smith, T. Tighe, D. Convey, J. Quintero, and Y. Wei, Thin Solid Films, 516, 885 (2008).
37.H. Cui and P. A. Burke, J. Electrochem. Soc., 151, G795 (2004).
38.C.W. Chen, T. C. Chang, P. T. Liu, T. M. Tsai, H. C. Huang, J. M. Chen, C. H. Tseng, C. C. Liu, and T. Y. Tseng, Thin Solid Films, 447–448, 632 (2004).
39.A. M. Wrobel, I. B. Lezak, P. Uznanski, and B. Glebocki, Chem. Vapor Depos., 16, 211 (2010).
40.C. C. Chiang, M. C. Chen, C. C. Ko, Z. C. Wu, S. M. Jang, and M. S. Liang, Jpn. J. Appl. Phys., 42, 4273 (2003).
41.A. Mallikarjunan, A. D. Johnson, L. Matz, R. N. Vrtis, A. Derecskei-Kovacs, X.
Jiang, and M. Xiao, Microelectron. Eng., Available online 5 May 2011.
42.H. E. Tu, Y. H. Chen, and J. P. Leu, J. Electrochem. Soc., 159, G56 (2012).
43.W. C. Oliver, and G. M. Pharr, J. Mater. Res., 7, 1564 (1992).
44.B. J. Wei, Y. L. Cheng, F. H. Lu, T. J. Chiu, H.C. Shih, J. Vac. Sci. Technol., A 29(4), 041507 (2011).
45.E. Xie, Z. Ma, H. Lin, Z. Zhang, D. He, Optical Materials, 23, 151 (2003).
46.A. Zenasni, V. Jousseaume, P. Holliger, L. Favennec, O. Gourhant, J. Appl. Phys., 102, 094107 (2007).
47.A. M. Wrobel, I. B. Lezak, A. W. Pietrzykowska, T. Aoki, and J. Kulpinski, J. Electrochem. Soc., 155, K66 (2008).
48.M. Tada, H. Yamamoto, F. Ito, T. Takeuchi, N. Furutake, and Y. Hayashi, J. Electrochem.Soc., 154, D354 (2007).
49.K. Yamamoto, Y. Koga, and S. Fujiwara, Jpn. J. Appl. Phys., 40, L123 (2001).
50.X. Peng, L. Song, J. Le, and X. Hu, J. Vac. Sci. Technol. B, 20, 159 (2002).
51.B. P. Swain, and N. M. Hwang, Appl. Surf. Sci., 254, 5319 (2008).
52.K. Urano, and M. Inoue, J. Chem. Phys., 66, 791 (1977).
53.J. Lubguban, T. Rajagopalan, N. Mehta, B. Lahlouh, S. L. Simon, and S.Gangopadhyay, J. Appl. Phys., 92, 1033 (2002).
54.C. Charles-Alfred and V. Jousseaume, Surf. Coat. Technol., 201, 9260 (2007).
55.Y. L. Cheng, J. Wu, T. J. Chiu, S. A. Chen, and Y. L. Wang, J. Vac. Sci. Technol. B, 29, 031207 (2011).
56.S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, New York (2007).
57.J. Robertson and M. J. Powell, Appl. Phys. Lett., 44, 415 (1984).
58.S Balakumar, G. Wong, C. F. Tsang, T. Hara, W. J. Yoo, Microelectronic Engineering 75, 183 (2004).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top