跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林華恩
研究生(外文):Lin, Hua-En
論文名稱:金電極於免疫球蛋白G抗體偵測之交流阻抗分析與電性模型
論文名稱(外文):AC impedance analysis and electrical modeling of immunoglobulin G antibodies detection on gold electrodes
指導教授:許鉦宗
指導教授(外文):Sheu, Jeng-Tzong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:78
中文關鍵詞:延伸式閘極自組裝單分子層聚乙二醇矽烷電化學阻抗頻譜
外文關鍵詞:Extended gateSelf-Assembled MonolayerPEG-silaneElectrochemical impedance spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是在探討以延伸式閘極結構之金電極最佳化修飾條件及量測方式。首先在金電極圖案上修飾自組裝單分子層(Self-Assembled Monolayer, SAM),再將生物分子固定於改質過後的分子層上,並量測修飾生物分子其電化學阻抗變化。為了達到良好的選擇性修飾,透過聚乙二醇矽烷(PEG-silane)來降低非專一性吸附,以提高元件偵測靈敏度,以循環伏安法驗證所修飾的分子層未具有氧化還原反應,而藉由螢光變化量來驗證所修飾的生物分子螢光亮度情形,從螢光變化量可以分辨出五個等級變化量(1mg/ml~100ug/ml)。模擬結果顯示藉由電化學阻抗變化推斷其等效電路圖形,最後模擬出不同濃度生物分子所造成表面電位變化,透過表面電位大小來斷定生物分子的含量;此外,將交流電訊號施加在參考電極上並觀測金電極的訊號,發現在低頻下能觀察到不同濃度的生物分子變化量,而金電極面積越小其表面電位變化量越大,其變化量為uV等級。此外,本論文藉由「阻抗匹配」方式來提高偵測元件閘極端實際量測到由生物分子造成表面電位之變化量,以此提高實際量測生物分子偵測靈敏度,使提高mV等級之變化量,因此改善閘極所感應之表面電位變化量,從實驗結果我們相信此研究對延伸式閘極系統量測會有重大的幫助。
In this research, optimized conditions of gold electrodes for surface modification and detection measurement were carried out. Self-Assembled Monolayer (SAM) were deposited on patterned gold electrodes, and biomolecules, Gluataraldehyde (GA) and Antibody were then bond on the SAM , and finally the electrochemical impedance (EIS) measured. To approach better selective modification the Polyethylene glycol-silane was used to decrease the non-specific binding of Antigen (Ag) on oxide surface. The cyclic voltametry (CV) and fluorescence were adopted to characterize the surface modification. CV results showed that no redox reaction was observed after SAM modification on gold electrodes. The intensity of fluorescence of Ab-Ag binding can distinguish 5-order of Ag concentrations. The simulation depended on equivalent circuit derived from the measurement of EIS show two important results. First, surface potential derived from the simulation has a linear relation with the Ag concentration. Second, the μV change of surface potential caused by Ag can be observed on gold electrode under an ac signal applied on reference electrode; the smaller is the area of gold electrode, the larger is the signal received on gold electrode. In addition, impedance matching was performed to increase the surface potential of gold electrode to mV. The results of this research provide a solid base for using gold electrodes as extended gates for Field-effect transistors in biosensing applications.
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 1
1-1前言 1
1-2場效電晶體於生物感測之發展 2
1-3場效電晶體感測器之檢測限制 6
1-4生物感測器之微流道系統 8
1-5表面電位之物理意義 9
1-6場效應電晶體之表面電位 11
1-7實驗動機 14
1-7-1研究動機 14
1-7-2研究目標 14
1-7-3論文架構 15
第二章 16
2-1元件製作 16
2-2微電極製作流程 17
2-3表面修飾 18
2-3-1表面修飾 PEG Silane (Passivation) 18
2-3-2表面修飾AUT Thiol (Linker) 19
2-3-3表面修飾Mouse IgG (Probe) 20
2-3-4表面修飾Anti-Mouse IgG (Target) 21
2-4微流道系統 22
2-4-1微流道設計與製作 22
2-4-2微流道系統架設 23
2-5電化學量測系統 25
2-5-1循環伏安法 (Cyclic Voltammetry) 25
2-5-2交流阻抗 ( AC impedance) 25
2-6表面電位模擬 26
2-6-1交流阻抗擬合與分析 27
2-6-2模擬MOSFET之表面電位 28
第三章 29
3-1表面修飾 29
3-1-1硫醇分子之驗證 30
3-2選擇性修飾之比較 31
3-2-1未修飾Silane 31
3-2-2修飾OTS Silane 32
3-2-3修飾PEG Silane 34
3-2-4選擇性修飾之螢光驗證 36
3-3表面電位變化情形 40
3-3-1硫醇分子之交流阻抗擬合與分析 (Linker) 40
3-3-2硫醇分子之表面電位變化情形 (Linker) 47
3-3-3 Mouse IgG之交流阻抗擬合與分析 (Probe) 50
3-3-4 Mouse IgG之表面電位變化情形 (Probe) 55
3-3-6 Anti-Mouse IgG之表面電位變化情形 (Target) 60
3-4藉由外加電阻提升表面電位變化率 62
3-4-1硫醇分子之表面電位變化情形 (Linker) 62
3-4-2 Mouse IgG之表面電位變化情形 (Probe) 67
3-4-3 Anti-Mouse IgG之表面電位變化情形 (Target) 71
第四章 75
4-1結論 75
4-2未來展望 76
參考文獻 77
[1] D. Grieshaber, R. Mackenzie, J. Vörös, and E. Reimhult, "Electrochemical Biosensors Sensor Principles and Architectures," Sensors, vol. 8, pp. 1400-1458, 2008.
[2] P. Bergveld, "Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years," Sensors and Actuators B: Chemical, vol. 88, pp. 1-20, 2003.
[3] J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999.
[4] K. Arora, N. Prabhakar, S. Chand, and B. D. Malhotra, "Escherichia coli Genosensor Based on Polyaniline," Analytical Chemistry, vol. 79, pp. 6152-6158, 2007.
[5] G. Konstantina and T. Peter, "Tyrosine kinase targets in drug discovery," Drugs of the future, vol. 28, pp. 679-697, 2003.
[6] J. Becker, "Signal transduction inhibitors─a work in progress," Nat Biotech, vol. 22, pp. 15-18, 2004.
[7] G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, "Multiplexed electrical detection of cancer markers with nanowire sensor arrays," Nat Biotech, vol. 23, pp. 1294-1301, 2005.
[8] L. M. d. C. Silva, A. C. S. A. Pinto, A. M. Salgado, and M. A. Z. Coelho, Development of Potentiometric Urea Biosensor based on Canavalia ensiformis Urease, 2011.
[9] P. Bergveld, "Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements," Biomedical Engineering, IEEE Transactions on, vol. BME-17, pp. 70-71, 1970.


[10] J. van der spiegel, I. Lauks, P. Chan, and D. Babic, "The extended gate chemically sensitive field effect transistor as multi-species microprobe," Sensors and Actuators, vol. 4, pp. 291-298, 1983.
[11] Y. Cui, et al., "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-92, Aug 17 2001.
[12] E. Stern, et al., "Label-free immunodetection with CMOS-compatible semiconducting nanowires," Nature, vol. 445, pp. 519-522, 2007.
[13] E. Stern, et al., "Importance of the Debye screening length on nanowire field effect transistor sensors," Nano Lett, vol. 7, pp. 3405-9, Nov 2007.
[14] D. R. Kim and X. Zheng, "Numerical characterization and optimization of the microfluidics for nanowire biosensors," Nano Lett, vol. 8, pp. 3233-7, Oct 2008.
[15] N. Wrobel, "Optimization of Interfaces for Genosensors Based on Thiol Layers on Gold Films," ed, 2002
[16] C. Bian, J. Tong, J. Sun, H. Zhang, Q. Xue, and S. Xia, "A field effect transistor (FET)-based immunosensor for detection of HbA1c and Hb," Biomedical Microdevices, vol. 13, pp. 345-352, 2011.
[17] M. J. Schöning and A. Poghossian, "Bio FEDs (Field-Effect Devices): State-of-the-Art and New Directions," Electroanalysis, vol. 18, pp. 1893-1900, 2006.
[18] S. Martinoia, G. Massobrio, and L. Lorenzelli, "Modeling ISFET microsensor and ISFET-based microsystems: a review," Sensors and Actuators B: Chemical, vol. 105, pp. 14-27, 2005.
[19] P. Pookaiyaudom, F. J. Lidgey, K. Hayatleh, P. Seelanan, and C. Toumazou, "Chemical current conveyor (CCCII+): System design and verification for buffer index/capacity measurement," Sensors and Actuators B: Chemical, vol. 147, pp. 228-233, 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top