跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊婷婷
論文名稱:金屬/半導體核殼奈米晶體之光催化特性研究
論文名稱(外文):Investigation on Photocatalytic Properties of Metal/Semiconductor Core/Shell Nanocrystals
指導教授:徐雍鎣
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:54
中文關鍵詞:金屬/半導體核殼奈米結構載子分離光催化
外文關鍵詞:Metal/SemiconductorCore/Shell Nanostructurescharge separationphotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究論文之主要成果乃在於開發出一新穎製程,以獲得具有均勻殼層包覆之Au-CdS核殼奈米晶體,經由合成條件的改變,其殼層的厚度可被精確地調控。Au-CdS核殼晶體乃被證實具有光誘發載子分離之效果,此一現象源自於Au與CdS之相對能帶結構所致,經照光後於CdS殼層內被激發之電子,可藉由Au-CdS異質介面的存在而轉移至Au端,並且留下大量電洞於CdS殼層內。藉由載子傳輸動力學的量測,此發生於Au-CdS核殼奈米晶體內之載子分離現象,可有效被定量化描述與討論,量測結果顯示電子經由CdS傳輸至Au端之速率常數,隨著殼層厚度的增加而上升。由於此Au-CdS核殼奈米晶體在光照後具有良好的載子分離效果,故當其進一步被運用於光催化反應系統中時,也展現出相當優異之催化效能;其中,CdS殼層越厚之Au-CdS奈米晶體其光催化效果越佳,此現象與電子傳輸速率常數變化的趨勢相符。在可見光的照射下,此Au-CdS核殼奈米晶體的光催化效能也優於N-doped P-25 TiO2 和 CdS塊材粉末之商用品,使其相當有潛力成為具高效光催化能力之可見光觸媒。此外,為提昇其耐久性以利長時間之應用,吾人在製備過程中加入Zn,以形成Au-Cd1-xZnxS核殼奈米晶體。在重複使用於光催化的過程中,Au-Cd1-xZnxS核殼奈米晶體展現了更佳的穩定性。由本研究所開發之製程亦可延伸應用於以其它硫化物做為殼層的金-半導體核殼奈米晶體之合成,例如Au-ZnS,且可將其應用於光電化學電池中甲醇氧化反應之催化。
A facile and reproducible synthetic approach for preparation of core-shell Au-CdS nanocrystals with controllable shell thickness was reported. Due to the difference in band structures between Au and CdS, a pronounced photoinduced charge separation took place at the interface of Au and CdS, resulting in the electron-charged Au core and the hole-enriched CdS shell. The electron-charging of Au core in Au-CdS nanocrystals was revealed with the charge carrier dynamics measurement. An increase in the electron-transfer rate constant was observed for Au-CdS nanocrystals with increasing shell thickness, probably due to the less pronounced electron-hole interaction of thicker CdS that enabled a fuller extent of participation of photoexcited electrons in the charge separation process. On the other hand, the hole-enriched CdS shell of Au-CdS nanocrystals upon light illumination was characterized with a photocatalytic process. The photocatalytic activity of Au-CdS nanocrystals was found to increase with increasing shell thickness, attributable to the greater capability of light absorption achieved by the extensive growth of the CdS shell. The correlation of photocatalytic activity with the shell thickness of Au-CdS nanocrystals corresponded well with that of the electron-transfer rate constant. As compared to the relevant commercial products like N-doped P-25 TiO2 and CdS powders, the as-synthesized Au-CdS nanocrystals exhibited superior photocatalytic performance under visible light illumination, demonstrating their potential as an effective visible-light-driven photocatalyst. To further enhance the durability performance, Zn was introduced into the shell of Au-CdS, producing Au-Cd1-xZnxS nanocrystals that showed relatively high stability in photocatalysis. The present synthetic route can be readily extended to obtain other sulfide-semiconductor-coated Au nanocrystals, such as Au-ZnS, which may find potential use for methanol oxidation in the photoelectrochemical cell.
Chapter 1 Introduction and Paper Review 1

Chapter 2 Motivation and Experiment 7
2-1 Motivation 7
2-2 Experimental Section 10
2-2.1 Chemicals 10
2-2.2 Preparation of Au colloids 10
2-2.3 Preparation of Au-CdS core-shell Nanocrystals 10
2-2.4 Extensive growth of CdS shell 11
2-2.5 Preparation of Au-Cd1-xZnxS Nanocrystals 11
2-2.6 Preparation of Au-ZnS Nanocrystals 12
2-2.7 Preparation of CdS Counterpart Nanocrystals 12
2-2.8 Preparation of N-Doped P-25 TiO2 12
2-2.9 Photocurrent Measurement 13
2-2.10 Photoluminescence Lifetime Measurement 13
2-2.11 Photocatalytic Activity Measurement 14
2-2.12 Photoelecrtochemical Catalytic Activity Measurement 14
2-2.13 Characterizations 15
2-3 Results and discussion 16
2-3.1 Au-CdS Core-Shell Nanocrystals 16
2-3.2 Au-CdxZnyS Core–Shell Nanocrystals 38
2-3.3 Au-ZnS Core–Shell Nanocrystals 40

Chapter 3 Conclusions and Future Work 45
3-1 Conclusions 45
3-2 Future Work 46

References 47

1. (a) Mokari, T.; Aharoni, A.; Popov, I.; Banin, U., Angew. Chem., Int. Ed. 2006, 45, 8001-8005; (b) Pacholski, C.; Kornowski, A.; Weller, H., Angew. Chem., Int. Ed. 2004, 43, 4774-4777; (c) Carbone, L.; Kudera, S.; Giannini, C.; Ciccarella, G.; Cingolani, R.; Cozzoli, P. D.; Manna, L., J. Mater. Chem. 2006, 16, 3952-3956; (d) Saunders, A. E.; Popov, I.; Banin, U., J. Phys. Chem. B 2006, 110, 25421-25429; (e) Yang, J.; Elim, H. I.; Zhang, Q.; Lee, J. Y.; Ji, W., J. Am. Chem. Soc. 2006, 128, 11921-11926; (f) Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N., Nano Lett. 2006, 6, 875-881; (g) Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U., Nat. Mater. 2005, 4, 855-863; (h) Mokari, T.; Rothenberg, E.; Popov, I.; Costi, R.; Banin, U., Science 2004, 304, 1787-1790.
2. (a) Halpert, J. E.; Porter, V. J.; Zimmer, J. P.; Bawendi, M. G., J. Am. Chem. Soc. 2006, 128, 12590-12591; (b) Saunders, A. E.; Koo, B.; Wang, X.; Shih, C.-K.; Korgel, B. A., ChemPhysChem 2008, 9, 1158-1163.
3. (a) Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N., Nano Lett. 2006, 6, 875-881; (b) Pellegrino, T.; Fiore, A.; Carlino, E.; Giannini, C.; Cozzoli, P. D.; Ciccarella, G.; Respaud, M.; Palmirotta, L.; Cingolani, R.; Manna, L., J. Am. Chem. Soc. 2006, 128, 6690-6698; (c) Wang, H.; Brandl, D. W.; Le, F.; Nordlander, P.; Halas, N. J., Nano Lett. 2006, 6, 827-832; (d) Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S., Nano Lett. 2005, 5, 379-382; (e) Zhang, L.; Dou, Y.-H.; Gu, H.-C., J. Colloid Interface Sci. 2006, 297, 660-664.
4. (a) Subramanian, V.; Wolf, E. E.; Kamat, P. V., J. Phys. Chem. B 2003, 107, 7479-7485; (b) Jakob, M.; Levanon, H.; Kamat, P. V., Nano Lett. 2003, 3, 353-358; (c) Subramanian, V.; Wolf, E. E.; Kamat, P. V., J. Am. Chem. Soc. 2004, 126, 4943-4950.
5. (a) Bard, A. J.; Fox, M. A., Acc. Chem. Res. 1995, 28, 141-145; (b) Bao, N.; Shen, L.; Takata, T.; Lu, D.; Domen, K., Chem. Lett. 2006, 35, 318-319; (c) Fujishima, A.; Honda, K., Nature 1972, 238, 37-38; (d) Lewis, N. S.; Nocera, D. G., Proc. Natl. Acad. Sci. 2006, 103, 15729-15735; (e) Lewis, N. S., Science 2007, 315, 798-801.
6. Gratzel, M., Nature 2001, 414, 338-344.
7. (a) Mills, A.; Davies, R. H.; Worsley, D., Chem. Soc. Rev. 1993, 22, 417-425; (b) Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fujishima, A., Environ. Sci. Technol. 1998, 32, 726-728.
8. Elmalem, E.; Saunders, A. E.; Costi, R.; Salant, A.; Banin, U., Adv. Mater. 2008, 20, 4312-4317.
9. Costi, R.; Saunders, A. E.; Elmalem, E.; Salant, A.; Banin, U., Nano Lett. 2008, 8, 637-641.
10. (a) Liz-Marzan, L. M., Langmuir 2006, 22, 32-41; (b) Scholes, G. D., Adv. Funct. Mater. 2008, 18, 1157-1172.
11. (a) Lee, J.-S.; Shevchenko, E. V.; Talapin, D. V., J. Am. Chem. Soc. 2008, 130, 9673-9675; (b) Ghosh, B.; Sahu, S.; Pal, A. J., J. Phys. Chem. C 2008, 112, 11290-11294; (c) Gooding, A. K.; Gomez, D. E.; Mulvaney, P., ACS Nano 2008, 2, 669-676.
12. (a) Salgueirino-Maceira, V.; Correa-Duarte, M. A.; Spasova, M.; Liz-Marzan, L. M.; Farle, M., Adv. Funct. Mater. 2006, 16, 509-514; (b) Jeong, U.; Teng, X.; Wang, Y.; Yang, H.; Xia, Y., Adv. Mater. 2007, 19, 33-60; (c) Salgueirino-Maceira, V.; Correa-Duarte, M. A., Adv. Mater. 2007, 19, 4131-4144.
13. (a) Kamat, P. V., J. Phys. Chem. C 2007, 111, 2834-2860; (b) Glaspell, G.; Hassan, H. M. A.; Elzatahry, A.; Abdalsayed, V.; El-Shall, M. S., Top. Catal. 2008, 47, 22-31.
14. (a) Dawson, A.; Kamat, P. V., J. Phys. Chem. B 2001, 105, 960-966; (b) Kamat, P. V., J. Phys. Chem. B 2002, 106, 7729-7744; (c) Hirakawa, T.; Kamat, P. V., J. Am. Chem. Soc. 2005, 127, 3928-3934.
15. (a) Oldfield, G.; Ung, T.; Mulvaney, P., Adv. Mater. 2000, 12, 1519-1522; (b) Hirakawa, T.; Kamat, P. V., Langmuir 2004, 20, 5645-5647; (c) Sakai, H.; Kanda, T.; Shibata, H.; Ohkubo, T.; Abe, M., J. Am. Chem. Soc. 2006, 128, 4944-4945.
16. (a) Subramanian, V.; Wolf, E.; Kamat, P. V., J. Phys. Chem. B 2001, 105, 11439-11446; (b) Subramanian, V.; Wolf, E. E.; Kamat, P. V., Langmuir 2003, 19, 469-474; (c) Lahiri, D.; Subramanian, V.; Shibata, T.; Wolf, E. E.; Bunker, B. A.; Kamat, P. V., J. Appl. Phys. 2003, 93, 2575-2582.
17. (a) Lee, J.-C.; Sung, Y.-M.; Kim, T. G.; Choi, H.-J., Appl. Phys. Lett. 2007, 91, 113104; (b) Wang, Y.; Wang, Y.; Meng, Y.; Ding, H.; Shan, Y.; Zhao, X.; Tang, X., J. Phys. Chem. C 2008, 112, 6620-6626; (c) Jagadale, T. C.; Takale, S. P.; Sonawane, R. S.; Joshi, H. M.; Patil, S. I.; Kale, B. B.; Ogale, S. B., J. Phys. Chem. C 2008, 112, 14595-14602.
18. (a) Wu, G.; Nishikawa, T.; Ohtani, B.; Chen, A., Chem. Mater. 2007, 19, 4 530-4537; (b) Periyat, P.; Pillai, S. C.; McCormack, D. E.; Colreavy, J.; Hinder, S. J., J. Phys. Chem. C 2008, 112, 7644-7652.
19. Bao, N.; Shen, L.; Takata, T.; Domen, K., Chem. Mater. 2008, 20, 110-117.
20. (a) Jing, D.; Guo, L., J. Phys. Chem. B 2006, 110, 11139-11145; (b) Bao, N.; Shen, L.; Takata, T.; Domen, K.; Gupta, A.; Yanagisawa, K.; Grimes, C. A., J. Phys. Chem. C 2007, 111, 17527-17534; (c) Li, W.; Li, D.; Chen, Z.; Huang, H.; Sun, M.; He, Y.; Fu, X., J. Phys. Chem. C 2008, 112, 14943-14947; (d) Shen, S.; Guo, L., Mater. Res. Bull. 2008, 43, 437-446.
21. Lin, G.; Zheng, J.; Xu, R., J. Phys. Chem. C 2008, 112, 7363-7370.
22. Wang, W.; Zhu, W.; Xu, H., J. Phys. Chem. C 2008, 112, 16754-16758.
23. (a) Yao, W.-T.; Yu, S.-H.; Liu, S.-J.; Chen, J.-P.; Liu, X.-M.; Li, F.-Q., J. Phys. Chem. B 2006, 110, 11704-11710; (b) Janet, C. M.; Viswanath, R. P., Nanotechnology 2006, 17, 5271-5277; (c) Jang, J. S.; Joshi, U. A.; Lee, J. S., J. Phys. Chem. C 2007, 111, 13280-13287; (d) Li, Y.; Hu, Y.; Peng, S.; Lu, G.; Li, S., J. Phys. Chem. C 2009, 113, 9352-9358; (e) Zhang, F.; Wong, S. S., Chem. Mater. 2009, 21, 4541-4554.
24. Huang, Y.; Sun, F.; Wang, H.; He, Y.; Li, L.; Huang, Z.; Wu, Q.; Yu, J. C., J. Mater. Chem. 2009, 19, 6901-6906.
25. (a) Tak, Y.; Kim, H.; Lee, D.; Yong, K., Chem. Commun. 2008, 4585-4587; (b) Guan, G.; Kida, T.; Kusakabe, K.; Kimura, K.; Fang, X.; Ma, T.; Abe, E.; Yoshida, A., Chem. Phys. Lett. 2004, 385, 319-322; (c) Jing, D.; Guo, L., J. Phys. Chem. C 2007, 111, 13437-13441; (d) Zong, X.; Yan, H.; Wu, G.; Ma, G.; Wen, F.; Wang, L.; Li, C., J. Am. Chem. Soc. 2008, 130, 7176-7177; (e) Li, G.-S.; Zhang, D.-Q.; Yu, J. C., Environ. Sci. Technol. 2009, 43, 7079-7085; (f) Kannaiyan, D.; Kim, E.; Won, N.; Kim, K. W.; Jang, Y. H.; Cha, M.-A.; Ryu, D. Y.; Kim, S.; Kim, D. H., J. Mater. Chem. 2010, 20, 677-682.
26. Kamat, P. V., J. Phys. Chem. C 2008, 112, 18737-18753.
27. Chen, W.-T.; Hsu, Y.-J., Langmuir 2010, 26, 5918-5925.
28. (a) Brown, P.; Kamat, P. V., J. Am. Chem. Soc. 2008, 130, 8890-8891; (b) Farrow, B.; Kamat, P. V., J. Am. Chem. Soc. 2009, 131, 11124-11131; (c) Williams, G.; Kamat, P. V., Langmuir 2009, 25, 13869-13873.
29. (a) Kongkanand, A.; Tvrdy, K.; Takechi, K.; Kuno, M.; Kamat, P. V., J. Am. Chem. Soc. 2008, 130, 4007-4015; (b) Tvrdy, K.; Kamat, P. V., J. Phys. Chem. A 2009, 113, 3765-3772; (c) Zhang, J.; Bang, J. H.; Tang, C.; Kamat, P. V., ACS Nano 2010, 4, 387-395; (d) Chakrapani, V.; Tvrdy, K.; Kamat, P. V., J. Am. Chem. Soc. 2010, 132, 1228-1229.
30. (a) Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Jr., Science 2002, 297, 2243-2245; (b) Nakamura, R.; Tanaka, T.; Nakato, Y., J. Phys. Chem. B 2004, 108, 10617-10620.
31. (a) Tong, H.; Zhu, Y.-J.; Yang, L.-X.; Li, L.; Zhang, L.; Chang, J.; An, L.-Q.; Wang, S.-W., J. Phys. Chem. C 2007, 111, 3893-3900; (b) Xiong, S.; Xi, B.; Xu, D.; Wang, C.; Feng, X.; Zhou, H.; Qian, Y., J. Phys. Chem. C 2007, 111, 16761-16767; (c) Xiang, J.; Cao, H.; Wu, Q.; Zhang, S.; Zhang, X.; Watt, A. A. R., J. Phys. Chem. C 2008, 112, 3580-3584.
32. (a) Xiong, S.; Xi, B.; Wang, C.; Zou, G.; Fei, L.; Wang, W.; Qian, Y., Chem.--Eur. J. 2007, 13, 3076-3081; (b) Zhao, P.; Huang, K., Cryst. Growth Des. 2007, 8, 717-722.
33. (a) Yang, Y.; Shi, J.; Chen, H.; Dai, S.; Liu, Y., Chem. Phys. Lett. 2003, 370, 1-6; (b) Sheeney-Haj-Ichia, L.; Pogorelova, S.; Gofer, Y.; Willner, I., Adv. Funct. Mater. 2004, 14, 416-424.
34. (a) Turkevich, J.; Stevenson, P. C.; Hillier, J., Discuss. Faraday Soc. 1951, 11, 55-75; (b) Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X., J. Am. Chem. Soc. 2007, 129, 13939-13948.
35. (a) Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P., J. Phys. Chem. B 2000, 104, 564-570; (b) Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H. T.; Gedanken, A., J. Phys. Chem. B 2004, 108, 4046-4052.
36. For bulk fcc Au, d(111)=0.2355 nm from JCPDS 04-0784.
37. For bulk wurtzite CdS, d(002)=0.3367 nm from JCPDS 06-0314.
38. Eustis, S.; El-Sayed, M. A., Chem. Soc. Rev. 2006, 35, 209-217.
39. (a) Njoki, P. N.; Lim, I. I. S.; Mott, D.; Park, H.-Y.; Khan, B.; Mishra, S.; Sujakumar, R.; Luo, J.; Zhong, C.-J., J. Phys. Chem. C 2007, 111, 14664-14669; (b) Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J., Langmuir 2008, 24, 5233-5237.
40. The detailed SPR calculation method is descibed in the Supporting Information.
41. (a) Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P., Langmuir 1996, 12, 4329-4335; (b) Salgueirino-Maceira, V.; Caruso, F.; Liz-Marzan, L. M., J. Phys. Chem. B 2003, 107, 10990-10994.
42. Shevchenko, E. V.; Bodnarchuk, M. I.; Kovalenko, M. V.; Talapin, D. V.; Smith, R. K.; Aloni, S.; Heiss, W.; Alivisatos, A. P., Adv. Mater. 2008, 20, 4323-4329.
43. Adenier, A.; Chehimi, M. M.; Gallardo, I.; Pinson, J.; Vila, N., Langmuir 2004, 20, 8243-8253.
44. Cavalleri, O.; Oliveri, L.; Dacca, A.; Parodi, R.; Rolandi, R., Appl. Surf. Sci. 2001, 175-176, 357-362.
45. Kamat, P. V.; Shanghavi, B., J. Phys. Chem. B 1997, 101, 7675-7679.
46. Hsu, Y.-J.; Lu, S.-Y.; Lin, Y.-F., Chem. Mater. 2008, 20, 2854-2856.
47. Zhang, H.-L.; Evans, S. D.; Henderson, J. R.; Miles, R. E.; Shen, T., J. Phys. Chem. B 2003, 107, 6087-6095.
48. Tian, C.; Mao, B.; Wang, E.; Kang, Z.; Song, Y.; Wang, C.; Li, S., J. Phys. Chem. C 2007, 111, 3651-3657.
49. Yu, K.; Wu, Z.; Zhao, Q.; Li, B.; Xie, Y., J. Phys. Chem. C 2008, 112, 2244-2247.
50. Chen, W.-T.; Yang, T.-T.; Hsu, Y.-J., Chem. Mater. 2008, 20, 7204-7206.
51. (a) James, D. R.; Liu, Y. S.; De, M. P.; Ware, W. R., Chem. Phys. Lett. 1985, 120, 460-5; (b) Posokhov, Y. O.; Ladokhin, A. S., Anal. Biochem. 2006, 348, 87-93.
52. (a) Chae, W.-S.; Ko, J.-H.; Hwang, I.-W.; Kim, Y.-R., Chem. Phys. Lett. 2002, 365, 49-56; (b) Sadhu, S.; Chowdhury, P. S.; Patra, A., J. Lumin. 2007, 126, 387-392.
53. (a) Chestnoy, N.; Harris, T. D.; Hull, R.; Brus, L. E., J. Phys. Chem. 1986, 90, 3393-9; (b) Chen, W.; Bovin, J.-O.; Joly, A. G.; Wang, S.; Su, F.; Li, G., J. Phys. Chem. B 2004, 108, 11927-11934.
54. Lu, S. G.; Xu, Z. K.; Chen, H.; Mak, C. L.; Wong, K. H.; Li, K. F.; Cheah, K. W., J. Appl. Phys. 2006, 99, 064103-4.
55. (a) Kim, D. S.; Park, Y. S., Chem. Eng. J. 2006, 116, 133-137; (b) Li, J.; Li, L.; Zheng, L.; Xian, Y.; Jin, L., Electrochim. Acta 2006, 51, 4942-4949; (c) Sun, S.; Wang, W.; Zhang, L.; Zhou, L.; Yin, W.; Shang, M., Environ. Sci. Technol. 2009, 43, 2005-2010.
56. (a) Chen, C.; Zhao, W.; Li, J.; Zhao, J.; Hidaka, H.; Serpone, N., Environ. Sci. Technol. 2002, 36, 3604-3611; (b) Lei, P.; Chen, C.; Yang, J.; Ma, W.; Zhao, J.; Ling, Z., Environ. Sci. Technol. 2005, 39, 8466-8474.
57. Konstantinou, I. K.; Albanis, T. A., Appl. Catal., B 2004, 49, 1-14.
58. (a) Antoun, T.; Brayner, R.; Al, T. S.; Fievet, F.; Chehimi, M.; Yassar, A., Eur. J. Inorg. Chem. 2007, 1275-1284; (b) Hota, G.; Idage, S. B.; Khilar, K. C., Colloids Surf., A 2007, 293, 5-12.
59. (a) Reber, J. F.; Meier, K., J. Phys. Chem. 1984, 88, 5903-13; (b) Meissner, D.; Memming, R.; Kastening, B., J. Phys. Chem. 1988, 92, 3476-83.
60. Meissner, D.; Memming, R.; Kastening, B., J. Phys. Chem. 1988, 92, 3476-3483.
61. Bass, M., Handbook of Optics, Third Edition Volume IV. McGraw Hill Professional: 2009.
62. (a) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R., J. Am. Chem. Soc. 2002, 125, 475-482; (b) Lee, E. J.; Bitner, T. W.; Ha, J. S.; Shane, M. J.; Sailor, M. J., J. Am. Chem. Soc. 1996, 118, 5375-5382.
63. Tsuji, I.; Kato, H.; Kudo, A., Angew. Chem. 2005, 117, 3631-3634.
64. Nash, T., Biochem. J. 1953, 55, 416-421.
65. (a) Marug?鴨, J.; Hufschmidt, D.; L?櫝ez-Mu?瓨z, M.-J.; Selzer, V.; Bahnemann, D., Appl. Catal., B 2006, 62, 201-207; (b) Du, Y.; Rabani, J., J. Phys. Chem. B 2003, 107, 11970-11978; (c) Ismail, A. A.; Bahnemann, D. W.; Bannat, I.; Wark, M., J. Phys. Chem. C 2009, 113, 7429-7435.
66. Pradhan, S.; Ghosh, D.; Chen, S., ACS Appl. Mater. Interfaces 2009, 1, 2060-2065.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top