跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 18:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯政榮
研究生(外文):Ko, Cheng-Jung
論文名稱:摻雜硝基苯胺與聚方酸菁高分子於以PQ為光敏感劑之感光高分子材料在體積全像資訊儲存上之特性研究
論文名稱(外文):Effect of Co-doping Notroaniline Compounds and Polysquaraine on Volume Holographic Data Storage Characteristics of Phenanthrenequinone-doped Photopolymers
指導教授:黃華宗
指導教授(外文):Whang, Wha-Tzong
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:120
中文關鍵詞:硝基苯胺全像儲存聚方酸菁菲醌動態範圍雙折射
外文關鍵詞:NitroanilineHolographic data storagePolysquarainePhenanthrenequinoneDynamic rangeBirefringence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的研究方向,主要在改善以Phenanthrenequinone (PQ)為光敏感劑的感光高分子材料在全像資訊儲存的特性表現,期望能研發出具有更佳全像記錄特性及反應性的材料。在本論文中首先將不同結構之硝基苯胺(nitroaniline),如: N,N-dimethyl-4-nitroaniline (DMNA), N-methyl-4-nitroaniline (MNA)和 4-nitroaniline (pNA),摻入PMMA/PQ的感光高分子中,並且利用波長為532nm之雷射,量測繞射效率(Diffraction efficiency)與動態儲存範圍(M#)等不同的光學實驗,探討所製備之材料在全像記錄上的特性。在結果中發現摻入硝基苯胺(nitroaniline)之感光高分子材料的繞射效率與動態儲存範圍皆有顯著的提升,其中以摻入DMNA之樣品的繞射效率可從38%提升至71%,而動態儲存範圍從2.7提升至7.3。為了瞭解摻入硝基苯胺之感光高分子的記錄機制,利用紫外光-可見光譜儀(UV-Vis)的吸收光譜、紅外線光譜儀(FTIR)、核磁共振光譜儀(NMR spectra)與X射線光電子能譜(XPS)等儀器分析。並從結果中發現了,DMNA在感光高分子照光記錄時並不會與PQ或殘餘的MMA單體產生光化學反應,其記錄機制是PQ與殘餘的MMA單體進行光化學反應時,因PQ的極化行為改變,而使DMNA的順向性產生了變化,而提升了感光高分子雙折射,使全像記錄的特性有顯著的改善。
第二部分主要是延續第一部分的研究成果,將DMNA與zinc methylacrylate (Zn(MA)2)同時摻入以PMMA/PQ的感光高分子中。利用Zn(MA)2會和DMNA分子反應,形成新的化合物,造成材料的雙折射有顯著的變化,而使全像記錄的特性有所提升。在514nm雷射的量測下,當同時摻入DMNA與Zn(MA)2時,其繞射效率會從原本PMMA/PQ的36.1%提升至86.2%。另外在動態儲存範圍的量測結果中發現,摻入DMNA與Zn(MA)2時M#也從原本的2.9提升至10.7。並利用質譜儀(Mass)與X射線光電子能譜(XPS)等儀器分析,分析感光高分子的記錄機制。
由第一部分和第二部分的結果發現,三級胺結構的硝基苯胺(para-Nitro-tertiary-anilines; (p-nitro-t-anilines))摻入PMMA/PQ感光高分子中,可改善感光高分子的雙折射,進而提升材料的全像記錄特性。因此,在第三部分選用了不同三級胺結構的硝基苯胺分子:N,N-dimethyl-4-nitroaniline (DMNA), N,N-Diethyl-4-nitroaniline (DENA), and N-Cyanomethyl-N-methyl-4-nitroaniline (CMMNA)摻入PMMA/PQ感光高分子中,針對全像記錄做一系列的研究。在研究中發現,摻入CMMNA分子的材料具有較高的雙折射,並且在繞射效率的量測中發現,摻有CMMNA分子的材料繞射效率會從原本的36.1%提升至81.9%。
最後,我們利用3-octylpyrrole和squaric acid合成了同時具有推電子基團(electron donor)與拉電子基團(electron acceptor)結構的聚芳酸菁(poly (3-octylpyrrole-co-squaric acid); PSQ3)分子,並嘗試將PSQ3分子導入PMMA/PQ感光高分子中,希望能改善材料的於全像儲存的特性。利用所製備的感光高分子薄膜進行了繞射效率(Diffraction efficiency)與動態儲存範圍(M#)的量測,在結果中發現,加入含有PSQ3分子的感光高分子的繞射效率可從9.0%提升至54.8% (提升約6.1倍),而動態儲存範圍從0.46提升至1.05 (增加約2.2倍之多),由此結果指出摻雜PSQ3分子對於全像特性的改善有其效果。

This study describes an approach toward improving the characteristics of a photopolymer for holographic data storage application. First of all, the diffraction efficiency (ηmax) and dynamic range (M#) of 9,10-phenanthrenequinone (PQ)–doped poly(methyl methacrylate) (PMMA) both improved significantly after co-doping with one of three nitroanilines—N,N-dimethyl-4-nitroaniline (DMNA), N-methyl-4-nitroaniline (MNA), and 4-nitroaniline (pNA). In particular, the value of ηmax increased from 38% for the PMMA/PQ system to 71% for the PMMA/PQ/DMNA system (a 1.89-fold improvement) and the value of M# increased accordingly from 2.7 to 7.3 (a 2.70-fold improvement). Thus, the holographic data storage characteristics of PMMA/PQ photopolymers can be improved through co-doping with nitroaniline compounds. We also investigated the mechanism of the nitroaniline-induced improvement in optical storage performance using proton nuclear magnetic resonance and X-ray photoelectron spectroscopy.
In second part, through co-doping different compounds, N,N-dimethyl-4-nitroaniline (DMNA) and zinc methylacrylate (Zn(MA)2), into 9,10-phenanthrenequinone (PQ) doped poly(methyl methacrylate) (PMMA), the diffraction efficiency and the value of dynamic range (M#) have been progressed. We enhanced the diffraction efficiency (from 36.1 to 86.2%) and the dynamic range (M#, from 2.9 to 10.7) of 9,10-phenanthrenequinone (PQ)-doped poly(methyl methacrylate) (PMMA) through co-doping with N,N-dimethyl-4-nitroaniline (DMNA) and zinc methacrylate [Zn(MA)2]. Using mass spectrometry and X-ray photoelectron spectroscopy, we investigated the mechanism behind the improvements in optical storage induced by the presence of Zn(MA)2 and DMNA in PMMA/PQ.
Next, three different para-Nitro-tertiary-anilines (p-nitro-t-anilines), N,N-dimethyl-4-nitroaniline (DMNA), N,N-Diethyl-4-nitroaniline (DENA), and N-Cyanomethyl-N-methyl-4-nitroaniline (CMMNA), co-doped with phenanthrenequinone (PQ) into poly (methyl methacrylate) (PMMA) significantly improved the holographic characteristics of the photopolymers to different degrees. These three co-dopants differed in their N-substituents only, which in turn changed the birefringence of the molecules. The samples with DMNA, DENA, and CMMNA increased their maximum diffraction efficiencies from 36.1 to 60.3, 69.6, and 81.9%, respectively. The CMMNA-doped sample demonstrated the best performance and highest birefringence in the recording process. The enhancement in maximum diffraction efficiency of the sample with CMMNA was up to 124%. The improvement in holographic recording characteristics paralleled the birefringence in the exposed photopolymers.
Finally, we synthesized poly(3-octylpyrrole-co-squaric acid) (PSQ3), a polysquaraine, through the reaction of 3-octylpyrrole and squaric acid, and then co-doped it with phenanthrenequinone (PQ) into poly(methyl methacrylate) (PMMA) to improve the holographic data storage characteristics of the photopolymer. The photopolymers co-doped with relatively small amounts of PSQ3 exhibited greatly improved holographic recording characteristics, including superior diffraction efficiency and dynamic range (M#). Among the samples co-doped with PQ and PSQ3, the maximum diffraction efficiency reached 54.8% (cf. 9.0% for PMMA/PQ) without further downgrade and the value of M# reached 1.05 (cf. 0.46 for PMMA/PQ). Therefore, the holographic data storage characteristics of the photopolymer PMMA/PQ were improved through co-doping with PSQ3.

中文摘要..........................................i
英文摘要 ........................................ iii
致謝 ............................................ vi
目錄 ............................................ vii
表目錄 .......................................... ix
圖目錄 .......................................... x
第一章、緒論 ..................................... 1
1.1 前言 ......................................... 1
1.2 全像儲存與多工原理 ........................... 3
1.2.1 全像術簡介 ................................. 3
1.2.2 多重儲存技術-體積全像術..................... 5
1.2.3 數位資料儲存和重建技術...................... 6
1.2.4 體積全像的發展 ............................. 7
1.3 全像資訊儲存特性分析 ......................... 8
1.4 體積全像記錄材料 ............................. 11
1.5 章節內容簡介與摘要 ........................... 13
第二章、文獻回顧 ..................................15
2.1 前言 ......................................... 15
2.2 光聚合系統 ................................... 16
2.3 光交鏈系統 ................................... 19
2.4 高分子摻雜系統 ................................22
2.5 其他系統 ......................................26
第三章、摻雜硝基苯胺於PMMA/PQ 感光高分子在全像儲存上的特性研
究 .........................................................31
3.1 前言 .......................................... 31
3.2 實驗部分....................................... 32
3.2.1 材料組成 .................................... 32
3.2.2 全像材料之製備 .............................. 34
3.2.3 全像量測 .................................... 34
3.2.4 材料化學量測 ................................ 35
3.3 結果與討論 .................................... 36
3.3.1 光學性質量測 ................................ 36
3.3.2 全像記錄量測 ................................ 39
3.3.3 感光高分子之化學特性分析 .................... 43
3.4 小結 .......................................... 53
第四章、摻雜Zn(MA)2 與硝基苯胺於PMMA/PQ 感光高分子中於全像記
錄的特性與物理機制分析 .................................. 55
4.1 前言 .......................................... 55
4.2 實驗部分....................................... 57
4.2.1 材料製備 .................................... 57
4.2.2 材料特性量測 ................................ 58
4.3 結果與討論 .................................... 60
4.3.1 光學性質量測 ................................ 60
4.3.2 全像記錄 .................................... 63
4.3.3 質譜分析 .................................... 67
4.3.4 X 光光電子能譜儀............................. 69
4.4 小結 .......................................... 72
第五章、摻雜不同三級胺結構之硝基苯胺於PMMA/PQ 感光高分子中於
全像記錄的特性分析....................................... 74
5.1 前言 .......................................... 74
5.2 樣品製備....................................... 76
5.3 結果與討論 .................................... 76
5.3.1 紫外光可見光光譜量測......................... 76
5.3.2 質譜分析 .................................... 78
5.3.3 雙折射量測 .................................. 81
5.3.4 全像特性量射 ….............................. 81
5.4 小結 .......................................... 84
第六章、摻雜聚方酸菁高分子於PMMA/PQ 感光高分子中在全像記錄的
應用 .................................................. 86
6.1 前言 .......................................... 86
6.2 實驗部分 ...................................... 88
6.2.1 Poly(3-octylpyrrole-co-squaric acid) (PSQ3)製備 ......88
6.2.2 Poly(1-octylpyrrole-co-squaric acid) (PSQ1)製備 ..... 88
6.2.3 感光高分子材料之製備......................... 89
6.2.4 感光高分子之量測 ............................ 89
6.3 結果與討論 .................................... 90
6.3.1 紅外光譜儀量測 .............................. 90
6.3.2 光學性質量測 ................................ 92
6.3.3 全像量測 .................................... 97
6.4 小結 .......................................... 100
第七章、結論 ...................................... 102
參考文獻 .......................................... 106
List of Publications .............................. 118
Resume ............................................ 120
第一章
1. R. A. Lessard and G. Manivannan, Proc. SPIE - Holographic Materials 2405, (1995), 2.
2. F. H. Mok, Opt. Letts. 18, (1993), 915.
3. B. L. Booth, Appl. Opt. 11, (1972), 2994.
4. C. P. Yang, S. H. Lin, M. L. Hsieh, K. Y. Hsu and T. C. Hsieh, International Journal of High Speed Electronics & Systems 8, (1997), 749.
5. D. Gabor, Nature 161, (1948), 777.
6. T. H. Maiman, R. H. Hoskins, I. J. D’Haenens, C. K. Asawa and V. Evtuhov, Phys. Rev. 123, (1961), 1151.
7. E. N. Leith, and J. Upatnieks, J. Opt. Soc. Am. 52, (1962), 1123.
8. P. J. van Heerden, Appl. Opt. 2, (1963), 393.
9. H. Kogelnik, Bell Syst. Tech. J. 48, (1969), 2909.
10. P. Hariharan, Optical Holography: Principles, techniques, and applications, Cambridge, New York, (1996).
11. P. Judeinstein, P. W. Oliveira, H. Krug and H. Schmidt, Adv. Mater. 7, (1997), 123.
12. G. W. Burr, Doctoral Dissertation: Volume Holographic Storage Using the 90° Geometry, California Institute of Technology, Pasadena, Calif.(1996).
13. K. Y. Hsu and S. H. Lin, Proc. SPIE 5206, (2003), 142.
第二章
14. T. A. Shankoff, Appl. Opt. 7, (1968), 2101.
15. R. A. Lessard and G. Manivannan, Proc. SPIE 2405, (1995), 2.
16. N. Sadlej and B. Smolinska, Opt. Laser Technol.7, (1975), 175.
17. S. Calixto, Appl. Opt. 26, (1987), 3904.
18. S. Yoshida and M. Yamamoto, Jpn. J. Appl. Phys. 48, (2009), 03A027.
19. M. R. Gleeson and J. T. Sheridan, J. Opt. A: Pure Appl. Opt. 11, (2009), 24008.
20. B. L. Booth, Appl. Opt. 14, (1975), 593.
21. K. Curtis and D. Psaltis, Appl. Opt. 33, (1994), 5396.
22. R. T. Ingwall and M. Troll, Opt. Eng. 28, (1989), 586.
23. D. A. Waldman, H. Y. S. Li and E. A. Cetin, Proc. SPIE 3291, (1998), 89.
24. A. Fimia, N. Lopez and F. Mateos, Proc. SPIE 1732, (1992), 105.
25. G. C. Bjorklund, Chr. Bräuchle, D. M. Burland, D. C. Alvarez, Opt. Lett. 6, (1980), 159.
26. C. Bräuchle, U. P. Wild, D. M. Burland, G. C. Bjorklund, and D. C.Alvarez, Opt. Lett. 7, (1982), 177.
27. V. Gerbig, R. K. Grygier, D. M. Burland, and G. Sincerbox, Opt. Lett. 8, (1983), 404.
28. M. Eich, J. H. Wendorff, B. Reck and H. Ringsdorf, Macromol. Rapid Commun. 8, (1987), 59.
29. P. Rochon, E. Batalla and A. Natasohn, Appl. Phys. Lett. 66, (1995), 136.
30. D. Y. Kim, S. K. Tripathy, L. Li and J. Kumar, Appl. Phys. Lett. 66, (1995). 1166.
31. Y. H. Cho, C. W. Shin, N. Kim, B. K. Kim and Y. Kawakami, Chem. Mater. 17, (2005), 6263.
32. V. K. S Hsiao, C. G. Lu, G. S. He, M. Pan, A. N. Cartwright, P. N. Prasad, R. Jakubiak, R. A. Vaia and T. J. Bunning, Opt. Exp. 13, (2005), 3787.
33. C. Solano, R. A. Lessard and P. C. Roberge, Appl. Opt. 24, (1985), 1189.
34. C. Solano, R. A. Lessard and P. C. Roberge, Appl. Opt. 26, (1987), 1989.
35. N. Capolla and R. A. Lessard, Appl. Opt. 27, (1988), 3008.
36. N. Capolla, R. A. Lessard, C. Carre and D. J. Lougnot, Appl. Phys.B 52, (1991), 326.
37. J. Blyth, Appl. Opt. 30, (1991), 1598.
38. C. Pizzocaro, C. Lafond and M. Bolte, J. Photoch. Photobio. A 151, (2002), 221.
39. G. Manivannan, G. Mailhot, M. Bolte and R. A. Lessard, Pure Appl. Opt. 3, (1994), 845.
40. G. Manivannan, R. Changkakoti and R. A. Lessard, Opt. Eng. 32, (1993), 671.
41. G. Manivannan, R. Changkakoti and R. A. Lessard, Polym. Adv. Tech. 4, (1993), 569.
42. Sh. D. Kakichashvili, Opt. Spektrosk. 33, (1972), 324.
43. T. Todorov, L. Nikolova, N. Tomova and V. Dragostinova, IEEE J. Quantum Electron. QE-22, (1986), 1262.
44. H. Taunaumang, M. Solyga, M. O. Tija and A. Miniewicz, Thin Solid Films 461, (2004), 316.
45. Y. J. Zhang, Z. F. Lu, X. F. Deng, Y. C. Liu and Y. Y. Zhao, Opt. Commun. 220, (2003), 289.
46. Y. Zhao, S. Y. Bai, K. Asatryan and T. Galstian, Adv. Funct. Mater. 13, (2003), 781.
47. M. J. Kim, C. Chun, T. Nakayama and D. Y. Kim, Jpn. J. Appl. Phys. 45, (2006), L169-171.
48. S. C. Fu, Y. C. Liu, L. Dong, Z. F. Lu, W. L. Hu and M. G. Xie, Mater. Lett. 59, (2005), 1449.
49. V. Weiss, A. A. Friesem and V. A. Krongauz, J. Img. Sci. Tech. 41, (1997), 371.
50. C. S. Paik and H. Morawetz, Marcomolecules 5, (1972), 171.
51. Z. Chen, A. Lewis, H. Takei and I. Nebenzahl, Appl. Opt. 30, (1991), 5188.
52. G. S. He, C. J. Wung, G. C. Xu and Paras N. Prasad, Appl. Opt. 30, (1991), 3810.
53. V. I. Sukhanov, A. M. Kursakova, S. A. Kuchinsky, E. R. Gavrilyuk and T. W. Zerda, J. Sol-Gel Sci. Tech. 8, (1997), 1111.
54. P. Judeinstein, P. W. Oliveira, H. Krug and H. Schmidt, Adv. Mater. Opt. Electro. 7, (1997), 123.
55. I. G. Marine, D. Bersani and P. P. Lottici, Opt. Mater. 15, (2001), 279.
56. S. Kucharski and R. Janik, Opt. Mater. 27, (2005), 1637.
57. L. Carretero, A. Murciano, S. Blaya, M. Ulibarrena, and A. Fimia, Opt. Express 12, (2004), 1780.
58. B. Plagemann, F. R. Graf, S. B. Altner, A. Renn and U. P. Wild, Appl. Phys. B 66, (1998), 67.
59. A. V. Turukhin, A. A. Gorokhovsky, C. Moser, I. V. Solomatin and D. Psaltis, J. Lumi. 86, (2000), 399.
60. A. V. Turukhin, R. S. Pandher, A. A. Gorokhovsky, Z. Liu, I. V. Solomatin and D. Psaltis, J. Lumin. 98, (2002), 207
61. A. Bloom, R. A. Bartolini and P. L. K. Hung, Polym. Eng. Sci. 17, (1977), 356.
62. A. Bloom, R. A. Bartolini and D. L. Ross, Appl. Phy. Lett. 24, (1974), 612.
63. R. A. Bartolini, A. Bloom, and H. A. Weakliem, Appl. Opt. 15, (1976), 1261.
64. Y. L. Freilich, M. Levy and S. Reich, J. Polym. Sci. Chem. Ed. 15, (1977), 1811.
65. A. Pu and D. Psaltis, Appl. Opt. 35, (1996), 2389.
66. V. L. Colvin, R. G. Larson, A. Haris and M. L. Shilling, J. Appl. Phys. 81, (1997), 5914.
67. H. Ono, T. Tamoto, A. Emoto and N. Kawatsuki, Jap. J. Appl. Phys. 44, (2005), 1783.
68. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich and R. Kowarschik, Appl. Phys. B 82, (2006), 299.
69. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault and F. J. McClung, Appl. Phys. Lett. 14, (1969), 159.
70. H. Franke, Appl. Opt. 23, (1984), 2729.
71. C. Carre and D. J. Lougnot, J. Phys. (Paris) III 3, (1993), 1445.
72. R. A. Lessard and G. Manivannan, Proc. SPIE 2405, (1995), 2.
73. D. A. Waldman, H. Y. S. Li and M. G. Horner, J. Imag. Sci. Tech. 41, (1997), 497.
74. D. A. Waldman, H. Y. S. Li and E. A. Cetin, Proc. SPIE 3291, (1998), 89.
75. J. Steckman, I. Solomatine, G. Zhou and D. Psaltis, Opt. Lett. 23, (1998), 1310.
76. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes and F. C. Schilling, Opt. Lett. 24, (1999), 487.
77. M. L. Schilling, V. L. Colvin, L. Dhar, A. L. Harris, F. C. Schilling, H. E. Katz, T. Wysocki, A. Hale, L. L. Blyler, and C. Boyd, Chem. Mater. 11, (1999), 247.
78. P. Cheben and M. L. Calvo, Appl. Phys. Lett. 78, (2001), 1490.
79. K. Y. Hsu, Proc. SPIE 3801, (1999), 66.
80. S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, Opt. Lett. 25, (2000), 451.
81. S. H. Lin, J. H. Lin, P. L. Chen, Y. N. Shiao and K. Y. Hsu, J. Non. Opt. Phys. Mater. 15, (2006), 239.
82. Y. N. Shiao, W. T. Whang and S. H. Lin, Opt. Eng. 43, (2004), 1993.
83. S. H. Lin, P. L. Chen, Y. N. Hsiao and W. T. Whang, Opt. Commun. 281, (2008), 559.
第三章
84. D. Psaltis and F. H. Mok, Sci. Am. 273, (1995), 70.
85. H. J. Coufal, D. Psaltis and G. Sincerbox, Holographic Data Storage, Part II. Springer Verlag, New York, (2000).
86. Y. N. Hsiao, W. T. Whang and S. H. Lin, Opt. Eng. 43, (2004), 1993.
87. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes and F. C. Schilling, Opt. Lett. 24, (1999), 487.
88. H. Ono, T. Tamoto, A. Emoto and N. Kawatsuki, Jpn. J. Appl. Phys. 44, (2005), 1781.
89. U. V. Mahilny, D. N. Marmysh, A. I. Stankevich, A. L. Tolstik, V. Matusevich and R. Kowarschik, Appl. Phys. B 82, (2006), 299.
90. H. Liu, D. Yu, X. Li, S. Luo, Y. Jiang and X. Sun, Opt. Express 18, (2010), 6447.
91. J. Wang, X. Sun, S. Luo and Y. Jiang, Opt. Commun. 283, (2010), 1707.
92. D. Yu, H. Liu, Y. Jiang and X. Sun. Opt. Commun. 283, (2010), 4219.
93. S. H. Lin, P. L. Chen, Y. N. Hsiao and W. T. Whang, Opt. Commun. 281, (2008), 559.
94. C. J. Ko, Y. L. Chang, Y. N. Hsiao, P. L. Chen, S. H. Lin, W. T. Whang, K. Y. Hsu, M. H. Tsai and W. Y. Tsang, J. Mod. Opt. 58, (2011), 1215.
95. Y. F. Chen, Y. N. Hsiao, S. H. Lin, K. Y. Hsu, W. S. Cheng and W. T. Whang, J. Opt. A: Pure Appl. Opt. 11, (2009), 125409.
96. S. D. Cox, T. E. Gier, G. D. Stucky, J. Bierlein, J. Am. Chem. Soc. 110, (1988), 2986.
97. E. Kelderman, W. Verboom, J. F. J. Engbersen, S. Harkema, G. J. T. Heesink, E. Lehmusvaara, N. F. Hulst and D. N. Reinhoudt, Chem. Mater. 4, (1992), 626.
98. O. Y. Borbulevych, R. D. Clark, A. Romero, L. Tan, M. Y. Antipin, V. N. Nesterov, B. H. Cardelino, C. E. Moore, M. Sanghadasa and T. V. Timofeeva, J. Mol. Struct. 604, (2002), 73.
99. K. Y. Hsu, S. H. Lin, Y. N. Hsiao and W. T. Whang, Opt. Eng. 42, (2003), 1390.
100. Y. N. Hsiao, W. T. Whang, S. H. Lin and K. Y. Hsu, Jpn. J. Appl. Phys. 45, (2006), 8699.
101. A. Pu and D. Psaltis, Appl. Opt. 35, (1996), 2389.
102. J. Mumbru, I. Solomatine, D. Psaltis, S. H. Lin, K. Y. Hsu, W. Z. Chen and W. T. Whang, Opt. Commun. 194, (2001), 103.
103. S. Farid, D. Hess, G. Pfundt, K. H. Scholz and G. Steffan, Chem. Commun. 434, (1968), 638.
104. R. M. Silverstein, G. C. Bassler and T. C. Morrill, Spectrometric Identification of Organic, 5th ed. John Wiley & Sons, Singapore, (1991).
105. M. Das, R. Trivedi, P. K. Sen, B. Q. Khattak, P. R. Shankar, R. Prasad and P. Sen, J. Nonlinear Opt. Phys. Mater. 17, (2008), 85.
106. M. Rashid and S. Sabir, J. Dispers. Sci. Technol. 30, (2009), 297.
107. E. Kavitha, N. Sundaraganesan and S. Sebastian. Indian J. Pure Appl. Phys. 48, (2010), 20.
108. M. S. Elliot, F. J. Smith and A. M. Fraser, Propellants, explos. Pyrotech. 25, (2000), 31.
109. R. Bharathikannab, A. Chandramohan, M. A. Kandhaswamy, J. Chandrasekaran, R. Renhanathan and V. Kandavelu, Cryst. Res. Technol. 43, (2008), 683.
110. R. Valluvan, K. Selvaraju and S. Kumararaman, Mater. lett. 59, (2005), 1173.
111. S. Azhagiri, G. R. Ramkumaar, S. Jayakumar, S. Kumaresan, R. Arunbalaji, S. Gunasekaran and S. Srinivasan, J. Mol. Model. 16, (2010), 87.
112. U. Okwieka, K. Holderna-Natkaniec, T. Misiaszek, W. Medycki, J. Baran and M. M. Szostak, J. Chem. Phys. 131, (2009), 144505.
113. N. B. Colthup, L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3th ed. Academic Press, San Diego, (1990).
114. L. J. Bellamy, The Infrared Spectra of Complex Molecules, 2th ed. Chapman and Hall, New York, (1980).
115. V. V. Prezhdo, A. S. Bykova, O. V. Prezhdo, Z. Daszkiewicz, J. B. Kyziol and J. Zaleski, Russ. J. Gen. Chem. 76, (2006), 64.
116. A. V. Trofimova, A. I. Stankevich and V. V. Mogil'nyi, J. Appl. Spectrosc. 76, (2009), 585.
117. W. M. Horspool and P. S. Song. CRC Handbook of Organic Photochemistry and Photobiology, CRC Press, Boca Raton, (1995).
118. I. Roth, F. Simon, C. Bellmann, A. Seifert and S. Spange, Chem. Mater. 18, (2006), 4730.
119. R. A. Ando, G. M. Nascimento, R. Landers and P. S. Santos, Spectrochim. Acta. A 69, (2008), 319.
120. C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Mullenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin–Elmer Corporation, Eden Prairie, (1992).
121. B. C. Roy, M. D. Gupta and J. K. Ray, Macromolecules 28, (1995), 1727.
122. H. Kaczmarek and H. Chaberska, Appl. Surf. Sci. 255, (2009), 6729.
第四章
123. N. Suzuki, Y. Tomita and T. Kojima, Appl. Phys. Lett. 81, (2002), 4121.
124. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka and K. Chikama, Appl. Phys. Lett. 88, (2006), 071103.
125. S. Blaya, A. Murciano, P. Acebal, L. Carretero, M. Ulibarrena and A. Fimia, Appl. Phys. Lett. 84, (2004), 4765.
126. Y. N. Hsiao, W. T. Whang and S. H. Lin, Jpn. J. Appl. Phys. 44, (2005), 914.
127. Y. N. Hsiao, W. T. Whang, S. H. Lin and K. Y. Hsu, Jpn. J. Appl. Phys. 45, (2006), 8699.
128. A.V. Trofimova, A.I. Stankevich, and V.V. Mogil'nyi, J. Appl. Spectrosc., 76, (2009), 585.
129. C.J. Ko, Y.N. Hsiao, S.H. Lin, P.L. Chen, W.T. Whang, K.Y. Hsu, Y.S. Hsiao, and C.C. Chen, J. Appl. Polym. Sci., DOI: 10.1002/APP.37835 (2012).
130. Y. Pocker, and G.T. Spyridis, J. Am. Chem. Soc., 124, (2002), 7390.
131. J. Zhang, T.K. Ha, R. Knochenmuss, and R. Zenobi, J. Phys. Chem. A, 106, (2002), 6610.
132. T. Irshaidat, Mol. Simul., 37, (2011), 414.
133. E. Riande and E. Saiz, Dipole moment and birefringence of polymers, Prentice Hall, Englewood Cliffs, New Jersey, (1992)
134. E. N. Izakovich and M. L. Khidekel, Russ. Chem. Rev. 57, (1988), 419.
第五章
135. A. V. Trofimova, A. I. Stankevich, V. V. Mogil’nyi, J. Appl. Spectrosc. 76, (2009), 585.
136. W. M. Horspool, P. S. Song, CRC Handbook of Organic Photochemistry and Photobiology; CRC Press: Boca Raton, (1995).
137. S. H. Lin, P. L. Chen, C. I. Chuang, Y. F. Chao, K. Y. Hsu, Opt. Lett. 36, (2011), 3039.
138. C. J. Ko, Y. N. Hsiao, S. H. Lin, P. L. Chen, W. T. Whang, K. Y. Hsu, Y. S. Hsiao, C. C. Chen, J. Appl. Polym. Sci. 2012, DOI: 10.1002/APP.37835
139. Y.N. Hsiao, W.T. Whang and S.H. Lin, Opt. Eng. 43, (2004), 1993.
140. Y. N. Hsiao, W. T. Whang, S. H. Lin and K. Y. Hsu, Jpn. J. Appl. Phys. 45, (2006), 8699.
第六章
141. K. Y. Law and F. C. Bailey, J. Chem. Soc. Chem. Commun. (1990) 863.
142. K. Y. Law and F.C. Bailey, J. Org. Chem. 57, (1992), 3278.
143. M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi and M. Grätzel, J. Am. Chem. Soc. 123, (2001), 1613.
144. M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Grätzel, J. Am. Chem. Soc. 127, (2005), 16835.
145. A. Treibs and K. Jacob, Angew. Chem., Int. Ed. 4, (1965), 694.
146. A. Treibs and K. Jacob, Liebigs. Ann. Chem. 699, (1966), 153.
147. W. Ziegenbein and H. E. Sprenger, Angew. Chem., Int. Ed. 5, (1966), 893.
148. H. E. Sprenger and W. Ziegenbein, Angew. Chem., Int. Ed. 5, (1966), 894.
149. H. E. Sprenger and W. Ziegenbein, Angew. Chem., Int. Ed. 7, (1968), 530.
150. E. E. Havinga, W. ten Hoeve and H. Wynberg, Polym. Bull. 29, (1992), 119.
151. E. E. Havinga, W. ten Hoeve and H. Wynberg, Synth. Met. 55, (1993), 299.
152. L. H. Liu, K. Nakatani, R. Pansu, J. J. Vachon, P. Tauc and E. Ishow, Adv. Mater. 19, (2007), 433.
153. Y. He, W. Zhou1, F. Wu, M. Li and E. Wang, J. photochem. photobiol. A 162, (2004), 463.
154. G. Mohr, J. Sens. Actuators B 107, (2005), 2.
155. C. E. Silva, R. Diniz, B. L. Rodrigues and L. F. C. de Oliveira, J. mol. struct. 831, (2007), 187.
156. C. R. Chenthamarakshan and A. Ajayaghosh, Chem. Mater. 10, (1998), 1657.
157. A. C. Sant’Ana, L. J. A. de Siqueira, P. S. Santos and M. L. A. Temperini, J. Raman Spectrosc. 37, (2006), 1346.
158. M. Goulkov, T. Granzow, U. Dörfler, T. Woike, M. Imlau, R. Pankrath and W. Kleemann, Opt. Commun. 218, (2003), 173.
159. H. J. Coufal, D. Psaltis and G. T. Sincerbox, Holographic Data Storage, Springer, New York, (2000).
160. W. M. Horspool, P. S. Song, CRC Handbook of Organic Photochemistry and Photobiology; CRC Press: Boca Raton, (1995).



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top