跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/09 10:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮士康
研究生(外文):Srikanth Ravipati
論文名稱:奈米暗黑半導體的光捕捉
論文名稱(外文):Light Trapping in Nanostructured Black Semiconductors
指導教授:柯富祥
指導教授(外文):Ko, Fu-Hsiang
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:136
中文關鍵詞:暗黑半導體
外文關鍵詞:Black Semiconductors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
捕獲光線對太陽能電池的效能非常重要,因此關於次波長奈米結構的開發,以避免表面反射造成的損失,近來頗受矚目,其中,製造極暗黑的奈米結構材料,是最近相關研究的重點之一。雖然某些材料已被證實具由接近完全不反射與完全吸收的光學特性,但若能製作以半導體材料為基礎的暗黑材料,對太陽能的研究開發更為重要。除此之外,半導體材料也具有與現有太陽能元件製程相容的優點,因而本論文的動機在於提出多種暗黑的半導體奈米結構與材料。論文中我們先介紹氫電漿奈米製造技術應用於各種半導體與介電材料的潛力,並於研究結果的第一部分,以氫電漿在1 μm 厚的多晶矽與非晶矽薄膜上製作出奈米結構,揭露了一種特別的奈米草/奈米截頭錐體雙層結構,具有近乎超暗的光學特性。在論文的第二部分,我們將氫電漿製程拓展至非矽基材料,製作出GaAs的奈米草結構,結果顯示其低反射在不同的波長與不同入射角的條件下幾乎與光的偏振無關。在論文的最後一部份,我們以化學蝕刻法製作了極薄、可撓的單晶矽,並成功地以氫電漿製作奈米草於其表面,根據在300-800 nm極佳的光學吸收與極低的反射結果,顯示此超薄的單晶矽薄片也具有超暗的特性。
Light trapping is very essential for solar cells to enable its efficient performance. Developing sub-wavelength nanostructures to efficiently absorb the light is an attractive method to avoid large reflection losses from any semiconductor material. Fabrication of nanostructured materials with super blackness is one of the cornerstones of present photovoltaic research. Although few super black materials have been proven with near zero reflection and near unity absorption, semiconductor based black materials has become an increasingly important black material for solar cell applications. Furthermore, semiconductor based black materials can be fabricated along with current solar cells technology. In this thesis we explore the fabrication and light trapping properties of nanostructured black semiconductors. The overview of potentiality of our hydrogen plasma etching process to fabricate wide variety of nanostructures including semiconductors and dielectrics is presented. In the first part, we fabricate randomly textured poly-Si and a-Si nanostructures from pre-deposited one micron thin films. We show the unique double layered nanostructures of a-Si nanograss on top of Si nanofrustum behaves as most similar to a black material. In the second part, we demonstrate that the hydrogen plasma etching process can be extended to fabricate grass like GaAs nanostructures. Antireflection performance of almost independent of polarization of the incident light over a broad range of wavelengths and wide range of incidence angle from GaAs nanograss is revealed. In the final part, we explore the fabrication of flexible ultrathin crystalline silicon films by wet chemical etching. We also extended the fabrication of nanograss-like structures on flexible ultrathin crystalline silicon films, using hydrogen plasma etching process. The combination of high optical absorption and extremely low reflectance of the nanostructured ultrathin crystalline silicon films over a broad range of wavelengths from 300 to 800 nm demonstrates its super blackness.
Contents

Acknowledgements…………………………………………………………... i
Abstract (Chinese)………………………………………………………….. iv
Abstract (English)………………………………………………………….... v
Contents…………………………………………………………………….. vii
List of Tables………………………………………………………………... ix
List of Figures………………………………………………………………... x
List of Abbreviations……………………………………………………... xvii
List of Symbols…………………………………………………………….. xix

Chapter-1: Introduction…………………………………………………….. 1
1.1 Motivation……………………………………………………………………… 1
1.2 Basic concepts for light trapping……………………………………………... 2
1.3 Black materials overview…………………………………………………….... 3
1.4 CNT based black materials…………………………………………………… 5
1.5 Nanostructured black silicon………………………………………………….. 6
1.6 Scope of the thesis……………………………………………………………… 9

Chapter-2: Plasma based approaches to fabrication of semiconductor nanostructures……………………………………………………………… 13
2.1 Potentiality of hydrogen plasma nanofabrication process…………………. 15
2.2 Outline of nanostructures fabricated……………………………………….. 16
2.3 Experimental procedure and instruments………………………………….. 17

Chapter-3: Silicon based nanostructures for light trapping…………….. 27
3.1 Polycrystalline black silicon…………………………………………………. 28
3.1.1 Density and length variation………………………………………. 30
3.1.2 Extremely low reflectance of polycrystalline black silicon………. 32
3.2 Doublelayered a-Si nanograss on Si nanofrustum…………………………. 35
3.2.1 Realization of ultralow reflectance………………………………... 39
3.2.2 Angle and wavelength independent light trapping……………...... 41
3.2.3 Refractive index profile calculations……………………………….. 42
3.3 Summary of light trapping characteristics in Si based black semiconductors………………………………………………………………….... 44


Chapter-4: GaAs nanostructures for enhanced light trapping………….. 59
4.1 Sub-20 nm GaAs nanograss fabricated by plasma etching………………... 61
4.2 Broadband and wide angle antireflection of GaAs nanograss…………….. 63
4.3 Summary of light trapping features in GaAs nanograss…………………... 66

Chapter-5: Light trapping in nanostructured single crystalline flexible platforms…………………………………………………………................. 74
5.1 Flexible ultrathin crystalline silicon………………………………………… 76
5.2 Fabrication of nanostructures on flexible ultrathin crystalline silicon…… 77
5.3 Antireflection properties over broadband range…………………………… 78
5.4 Absorption enhancement in flexible ultrathin crystalline silicon…………. 81

6. Conclusions and Outlook……………………………………………….. 93

References…………………………………………………………………. 100
Appendix…………………………………………………………………... 113
List of Publications………………………………………………………... 114

References

Chapter-1
1. U.S. Energy Information Association. Statistical review of world energy. Technical report, BP, 2011. 1

2. Lewis, N. S. Mrs Bull 2007, 32, (10), 808-820.

3. Castaner, L.; Markvart, T. Practical Handbook of Photovoltaics Fundamentals and Applications, 1st ed.; Elsevier Science: New York, 2003.

4. Raguin, D. H.; Morris, G. M. Appl Optics 1993, 32, (7), 1154-1167.

5. Wilson, S. J.; Hutley, M. C. Opt Acta 1982, 29, (7), 993-1009.

6. Gabe, D. R.; Gould, S. E. Surf Coat Tech 1988, 35, (1-2), 79-91.

7. Cui, G. F.; Li, N.; Li, D. Y.; Zheng, J.; Wu, Q. L. Surf Coat Tech 2006, 200, (24), 6808-6814.

8. Saxena, V.; Rani, R. U.; Sharma, A. K. Surf Coat Tech 2006, 201, (3-4), 855-862.

9. Patel, S. N.; Inal, O. T. Thin Solid Films 1984, 113, (1), 47-57.

10. Li, G. Y.; Niu, L. Y.; Lian, J. S.; Jiang, Z. H. Surf Coat Tech 2004, 176, (2), 215-221.

11. Kodama, S.; Horiuchi, M.; Kunii, T.; Kuroda, K. Ieee T Instrum Meas 1990, 39, (1), 230-232.

12. Brown, R. J. C.; Brewer, P. J.; Milton, M. J. T. J Mater Chem 2002, 12, (9), 2749-2754.

13. Shashikala, A. R.; Sharma, A. K.; Bhandari, D. R. Sol Energ Mat Sol C 2007, 91, (7), 629-635.

14. Ishii, J.; Ono, A. Aip Conf Proc 2003, 684, 705-710.

15. Philipp, H. R. Phys Rev B 1977, 16, (6), 2896-2900.

16. Touloukian, Y.S. Thermophysical Properties of Matter, the TPRC Data Series (New York), Vol 8, 1970.

17. Yang, Z. P.; Ci, L. J.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Nano Lett 2008, 8, (2), 446-451.

18. Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D. N.; Yumura, M.; Hata, K. P Natl Acad Sci USA 2009, 106, (15), 6044-6047.

19. Hsieh, K. C.; Tsai, T. Y.; Wan, D. H.; Chen, H. L.; Tai, N. H. Acs Nano 2010, 4, (3), 1327-1336.

20. Langmuir, I.; Found, G.; Dittmer, A. F. Science 1924, 60, (1557), 392-394.

21. Gittleman, J. I.; Sichel, E. K.; Lehmann, H. W.; Widmer, R. Appl Phys Lett 1979, 35, (10), 742-744.

22. Koynov, S.; Brandt, M. S.; Stutzmann, M. Appl Phys Lett 2006, 88, (20), 203107–203109.

23. Striemer, C. C.; Fauchet, P. M. Appl Phys Lett 2002, 81, (16), 2980-2982.

24. Wu, C.; Crouch, C. H.; Zhao, L.; Carey, J. E.; Younkin, R.; Levinson, J. A.; Mazur, E.; Farrell, R. M.; Gothoskar, P.; Karger, A. Appl Phys Lett 2001, 78, (13), 1850-1852.

25. Younkin, R.; Carey, J. E.; Mazur, E.; Levinson, J. A.; Friend, C. M. J Appl Phys 2003, 93, (5), 2626-2629.

26. Lee, C.; Bae, S. Y.; Mobasser, S.; Manohara, H. Nano Lett 2005, 5, (12), 2438-2442.

27. Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C. Nat Nanotechnol 2007, 2, (12), 770-774.

Chapter-2
1. Zheng, J.; Yang, R.; Xie, L.; Qu, J. L.; Liu, Y.; Li, X. G. Adv Mater 2010, 22, (13), 1451-1473.

2. Chhowalla, M.; Teo, K. B. K.; Ducati, C.; Rupesinghe, N. L.; Amaratunga, G. A. J.; Ferrari, A. C.; Roy, D.; Robertson, J.; Milne, W. I. J Appl Phys 2001, 90, (10), 5308-5317.

3. Zhi, C. Y.; Bai, X. D.; Wang, E. G. Appl Phys Lett 2002, 81, (9), 1690-1692.

4. Zhong, G.; Hofmann, S.; Yan, F.; Telg, H.; Warner, J. H.; Eder, D.; Thomsen, C.; Milne, W. I.; Robertson, J. J Phys Chem C 2009, 113, (40), 17321-17325.

5. Cabarrocas, P. R. I.; Nguyen-Tran, T.; Djeridane, Y.; Abramov, A.; Johnson, E.; Patriarche, G. J Phys D Appl Phys 2007, 40, (8), 2258-2266.

6. Mangolini, L.; Thimsen, E.; Kortshagen, U. Nano Lett 2005, 5, (4), 655-659.

7. Childs, M. A.; Gallagher, A. J Appl Phys 2000, 87, (3), 1076-1085.

8. Liu, X.; Wu, X. H.; Cao, H.; Chang, R. P. H. J Appl Phys 2004, 95, (6), 3141-3147.

9. Huang, B.; Yao, Q.; Li, S. Q.; Zhao, H. L.; Song, Q.; You, C. F. Powder Technol 2006, 163, (3), 125-133.

10. Li, X. G.; Chiba, A.; Takahashi, S. J Magn Magn Mater 1997, 170, (3), 339-345.

11. Li, X. G.; Takahashi, S. J Magn Magn Mater 2000, 214, (3), 195-203.

12. Lee, C. Y.; Tai, N. H.; Sheu, H. S.; Chiu, H. T.; Hsieh, S. H. Mater Chem Phys 2006, 97, (2-3), 468-471.

13. Zhang, Y. H.; Liu, T.; Wang, Z.; Li, Y.; Li, X. G. J Nanosci Nanotechno 2006, 6, (3), 813-817.

14. Mozetic, M.; Cvelbar, U.; Sunkara, M. K.; Vaddiraju, S. Adv Mater 2005, 17, (17), 2138-2142.

15. Cvelbar, U.; Chen, Z. Q.; Sunkara, M. K.; Mozetic, M. Small 2008, 4, (10), 1610-1614.

16. Cvelbar, U.; Ostrikov, K.; Mozetic, M. Nanotechnology 2008, 19, (40), 405605-7.
17. Borras, A.; Barranco, A.; Yubero, F.; Gonzalez-Elipe, A. R. Nanotechnology 2006, 17, (14), 3518-3522.

18. Li, S. Q.; Liang, Y. X.; Wang, T. H. Appl Phys Lett 2005, 87, (14), 143104-3.

19. She, J. C.; Deng, S. Z.; Xu, N. S.; Yao, R. H.; Chen, J. Appl Phys Lett 2006, 88, (1), 013112-3.

20. Klein, K. L.; Melechko, A. V.; Fowlkes, J. D.; Rack, P. D.; Hensley, D. K.; Meyer, H. M.; Allard, L. F.; McKnight, T. E.; Simpson, M. L. J Phys Chem B 2006, 110, (10), 4766-4771.

21. Xu, S.; Levchenko, I.; Huang, S. Y.; Ostrikov, K. Appl Phys Lett 2009, 95, (11), 111505-3.

22. Levchenko, I.; Ostrikov, K.; Keidar, M.; Xu, S. Appl Phys Lett 2006, 89, (3), 223108-3.

23. Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C. Nat Nanotechnol 2007, 2, (12), 770-774.

24. Huang, Z. H.; Carey, J. E.; Liu, M. G.; Guo, X. Y.; Mazur, E.; Campbell, J. C. Appl Phys Lett 2006, 89, (3), 033503-3.

25. Li, Y. F.; Zhang, J. H.; Yang, B. Nano Today 2010, 5, (2), 117-127.

26. Shieh, J.; Lin, C. H.; Yang, M. C. J Phys D Appl Phys 2007, 40, (8), 2242-2246.

27. Shieh, J.; Hou, F. J.; Chen, Y. C.; Chen, H. M.; Yang, S. P.; Cheng, C. C.; Chen, H. L. Adv Mater 2010, 22, (5), 597-601.

28. Ravipati, S.; Kuo, C. J.; Shieh, J.; Chou, C. T.; Ko, F. H. Microelectron Reliab 2010, 50, (12), 1973-1976.

29. Shieh, J.; Ravipati, S.; Ko, F. H.; Ostrikov, K. J Phys D Appl Phys 2011, 44, (17), 174010-6.

Chapter-3
1. Lalanne, P.; Morris, G. M. Nanotechnology 1997, 8, (2), 53-56.
2. Kanamori, Y.; Sasaki, M.; Hane, K. Opt Lett 1999, 24, (20), 1422-1424.

3. Wu, C.; Crouch, C. H.; Zhao, L.; Carey, J. E.; Younkin, R.; Levinson, J. A.; Mazur, E.; Farrell, R. M.; Gothoskar, P.; Karger, A. Appl Phys Lett 2001, 78, (13), 1850-3.

4. Younkin, R.; Carey, J. E.; Mazur, E.; Levinson, J. A.; Friend, C. M. J Appl Phys 2003, 93, (5), 2626-9.

5. Striemer, C. C.; Fauchet, P. M. Appl Phys Lett 2002, 81, (16), 2980-3.

6. Yu, Z. N.; Gao, H.; Wu, W.; Ge, H. X.; Chou, S. Y. J Vac Sci Technol B 2003, 21, (6), 2874-2877.

7. Lee, C.; Bae, S. Y.; Mobasser, S.; Manohara, H. Nano Lett 2005, 5, (12), 2438-2442.

8. Koynov, S.; Brandt, M. S.; Stutzmann, M. Appl Phys Lett 2006, 88, (20), 203107-203110.

9. Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C. Nat Nanotechnol 2007, 2, (12), 770-774.

10. Min, W. L.; Jiang, B.; Jiang, P. Adv Mater 2008, 20, (20), 3914-3918.

11. Xu, H. B.; Lu, N.; Qi, D. P.; Hao, J. Y.; Gao, L. G.; Zhang, B.; Chi, L. F. Small 2008, 4, (11), 1972-1975.

12. Mason, M. S.; Richardson, C. E.; Atwater, H. A.; Ahrenkiel, R. K. Thin Solid Films 2006, 501, (1-2), 288-290.

13. Gordon, I.; Carnel, L.; Van Gestel, D.; Beaucarne, G.; Poortmans, J. Prog Photovoltaics 2007, 15, (7), 575-586.

14. Fahr, S.; Ulbrich, C.; Kirchartz, T.; Rau, U.; Rockstuhl, C.; Lederer, F. Opt Express 2008,
16, (13), 9332-9343.

15. Schubert, M. F.; Mont, F. W.; Chhajed, S.; Poxson, D. J.; Kim, J. K.; Schubert, E. F. Opt Express 2008, 16, (8), 5290-5298.


16. Lipinski, M.; Kaminski, A.; Lelievre, J. F.; Lemiti, M.; Fourmond, E.; Zieba, P. Phys Status Solidi C 2007, 4, (4), 1566-1569.

17. Yang, M. C.; Shieh, J.; Hsu, C. C.; Cheng, T. C. Electrochem Solid St 2005, 8, (10), C131-C133.

18. Shieh, J.; Lin, C. H.; Yang, M. C. J Phys D Appl Phys 2007, 40, (8), 2242-2246.

19. Shieh, J.; Hou, F. J.; Chen, Y. C.; Chen, H. M.; Yang, S. P.; Cheng, C. C.; Chen, H. L. Adv Mater 2010, 22, (5), 597-601.

20. Bruggeman, D. A. G., Ann. Phys. 1935, 416, (7), 636-664.

21. Stavenga, D. G.; Foletti, S.; Palasantzas, G.; Arikawa, K. P Roy Soc B-Biol Sci 2006, 273, (1587), 661-667.

22. Dobrowolski, J. A.; Poitras, D.; Ma, P.; Vakil, H.; Acree, M. Appl Optics 2002, 41, (16), 3075-3083.

23. Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Nano Lett 2008, 8, (9), 2638-2642.

24. Chao, Y. C.; Chen, C. Y.; Lin, C. A.; He, J. H. Energ Environ Sci 2011, 4, (9), 3436-3441.

25. Kawanishi, T. Opt Commun 2000, 186, (4-6), 251-258.

26. Dai, Y. A.; Chang, H. C.; Lai, K. Y.; Lin, C. A.; Chung, R. J.; Lin, G. R.; He, J. H. J Mater Chem 2010, 20, (48), 10924-10930.

27. Tarancon, A.; Burriel, M.; Santiso, J.; Skinner, S. J.; Kilner, J. A. J Mater Chem 2010, 20, (19), 3799-3813.

28. Cao, A. Y.; Zhang, X. F.; Xu, C. L.; Wei, B. Q.; Wu, D. H. Sol Energ Mat Sol C 2002, 70, (4), 481-486.

29. Shashikala, A. R.; Sharma, A. K.; Bhandari, D. R. Sol Energ Mat Sol C 2007, 91, (7), 629-635.

30. Garnett, E.; Yang, P. D. Nano Lett 2010, 10, (3), 1082-1087.

31. Sivakov, V.; Andra, G.; Gawlik, A.; Berger, A.; Plentz, J.; Falk, F.; Christiansen, S. H. Nano Lett 2009, 9, (4), 1549-1554.

32. Lu, Y. R.; Lal, A. Nano Lett 2010, 10, (11), 4651-4656.

33. Kelzenberg, M. D.; Turner-Evans, D. B.; Putnam, M. C.; Boettcher, S. W.; Briggs, R. M.; Baek, J. Y.; Lewis, N. S.; Atwater, H. A. Energ Environ Sci 2011, 4, (3), 866-871.

34. Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo, J. R.; Atwater, H. A.; Lewis, N. S. Science 2010, 327, (5962), 185-187.

35. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Nat Mater 2010, 9, (3), 239-244.

36. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Nat Mater 2010, 9, (4), 368-368.

37. Brown, R. J. C.; Brewer, P. J.; Milton, M. J. T. J Mater Chem 2002, 12, (9), 2749-2754.

38. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Nat Mater 2010, 9, (3), 239-244.

39. Yang, Z. P.; Ci, L. J.; Bur, J. A.; Lin, S. Y.; Ajayan, P. M. Nano Lett 2008, 8, (2), 446-451.

40. Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D. N.; Yumura, M.; Hata, K. P Natl Acad Sci USA 2009, 106, (15), 6044-6047.

41. Xi, J. Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M. F.; Lin, S. Y.; Liu, W.; Smart, J. A. Nat Photonics 2007, 1, (3), 176-179.

42. Kuo, M. L.; Poxson, D. J.; Kim, Y. S.; Mont, F. W.; Kim, L. K.; Schuhert, E. F.; Lin, S. Y. Opt Lett 2008, 33, (21), 2527-2529.
43. Hsieh, K. C.; Tsai, T. Y.; Wan, D. H.; Chen, H. L.; Tai, N. H. Acs Nano 2010, 4, (3), 1327-1336.

44. Fan, Z. Y.; Kapadia, R.; Leu, P. W.; Zhang, X. B.; Chueh, Y. L.; Takei, K.; Yu, K.; Jamshidi, A.; Rathore, A. A.; Ruebusch, D. J.; Wu, M.; Javey, A. Nano Lett 2010, 10, (10), 3823-3827.

45. Park, H.; Shin, D.; Kang, G.; Baek, S.; Kim, K.; Padilla, W. J. Adv Mater 2011, 23, (48), 5796-5800.

46. Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Nano Lett 2009, 9, (1), 279-282.

47. Shah, A. V.; Schade, H.; Vanecek, M.; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J. Prog Photovoltaics 2004, 12, (2-3), 113-142.

48. Ravipati, S.; Shieh, J.; Ko, F. H.; Yu, C. C.; Chen, H. L.; Wu, C. T.; Chen, S. H. Energ Environ Sci 2012, 5, (6), 7601-7605.

49. Hu, L.; Chen, G. Nano Lett 2007, 7, (11), 3249-3252.

Chapter-4
1. Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C. Nat Nanotechnol 2007, 2, (12), 770-774.

2. Xi, J. Q.; Schubert, M. F.; Kim, J. K.; Schubert, E. F.; Chen, M. F.; Lin, S. Y.; Liu, W.; Smart, J. A. Nat Photonics 2007, 1, (3), 176-179.

3. Diedenhofen, S. L.; Vecchi, G.; Algra, R. E.; Hartsuiker, A.; Muskens, O. L.; Immink, G.; Bakkers, E. P. A. M.; Vos, W. L.; Rivas, J. G. Adv Mater 2009, 21, (9), 973-978.

4. Clapham, P. B.; Hutley M. C.; Bakr, Nature 1973, 480, (5414), 281-282.

5. Stavenga, D. G.; Foletti, S.; Palasantzas, G.; Arikawa, K. P Roy Soc B-Biol Sci 2006, 273, (1587), 661-667.

6. Yamada, T.; Moto, A.; Iguchi, Y.; Takahashi, M.; Tanaka, S.; Tanabe, T.; Takagishi, S. Jpn J Appl Phys 2 2005, 44, (28-32), L985-L987.

7. King, R. R.; Law, D. C.; Edmondson, K. M.; Fetzer, C. M.; Kinsey, G. S.; Yoon, H.; Sherif, R. A.; Karam, N. H. Appl Phys Lett 2007, 90, (18), 183516-183518.

8. Algora, C.; Ortiz, E.; Rey-Stolle, I.; Diaz, V.; Pena, R.; Andreev, V. M.; Khvostikov, V. P.; Rumyantsev, V. D. IEEE T Electron Dev 2001, 48, (5), 840-844.

9. LaPierre, R. R. J Appl Phys 2011, 110, (1), 014310- 6.

10. Oliva, E.; Dimroth, F.; Bett, A. W. Prog Photovoltaics 2008, 16, (4), 289-295.

11. Chang, T. H.; Wu, P. H.; Chen, S. H.; Chan, C. H.; Lee, C. C.; Chen, C. C.; Su, Y. K. Opt Express 2009, 17, (8), 6519-6524.

12. Yu, P. C.; Chang, C. H.; Chiu, C. H.; Yang, C. S.; Yu, J. C.; Kuo, H. C.; Hsu, S. H.; Chang, Y. C. Adv Mater 2009, 21, (16), 1618-1621.

13. Nakayama, K.; Tanabe, K.; Atwater, H. A. Appl Phys Lett 2008, 93, (12), 121904-3.

14. Han, K. S.; Shin, J. H.; Yoon, W. Y.; Lee, H. Sol Energ Mat Sol C 2011, 95, (1), 288-291.

15. Kim, J. K.; Chhajed, S.; Schubert, M. F.; Schubert, E. F.; Fischer, A. J.; Crawford, M. H.; Cho, J.; Kim, H.; Sone, C. Adv Mater 2008, 20, (4), 801-804.

16. Kanamori, Y.; Ishimori, M.; Hane, K. IEEE Photonic Tech L 2002, 14, (8), 1064-1066.

17. Song, Y. M.; Choi, E. S.; Yu, J. S.; Lee, Y. T. Opt Express 2009, 17, (23), 20991-20997.

18. Wendt, J. R.; Vawter, G. A.; Smith, R. E.; Warren, M. E. J Vac Sci Technol B 1996, 14, (6), 4096-4099.

19. Smith, R. E.; Warren, M. E.; Wendt, J. R.; Vawter, G. A. Opt Lett 1996, 21, (15), 1201-1203.

20. Sun, K. W.; Huang, S. C.; Kechiantz, A.; Lee, C. P. Opt Quant Electron 2005, 37, (4), 425-432.
21. Song, Y. M.; Jang, S. J.; Yu, J. S.; Lee, Y. T. Small 2010, 6, (9), 984-987.

22. Song, Y. M.; Bae, S. Y.; Yu, J. S.; Lee, Y. T. Opt Lett 2009, 34, (11), 1702-1704.

23. Chen, X.; Fan, Z. C.; Zhang, J.; Song, G. F.; Chen, L. H. Chinese Phys Lett 2010, 27, (12), 124210-124213.

24. Sun, C. H.; Ho, B. J.; Jiang, B.; Jiang, P. Opt Lett 2008, 33, (19), 2224-2226.

25. Kim, D. S.; Park, M. S.; Jang, J. H. J Vac Sci Technol B 2011, 29, (2), 020602-020605.

26. Kim, B. J.; Kim, J. Opt Express 2011, 19, (10), A326-A330.

27. Kim, B. J; Bang, J.; Jang, S.; Kim, D.; Kim, J. Thin Solid Films 2010, 518, (22), 6583-6586.

28. Leem, J. W.; Yu, J. S.; Song, Y. M.; Lee, Y. T. Sol Energ Mat Sol C 2011, 95, (2), 669-676.

29. Yang, M. C.; Shieh, J.; Hsu, C. C.; Cheng, T. C. Electrochem Solid St 2005, 8, (10), C131-C133.

30. Shieh, J.; Hou, F. J.; Chen, Y. C.; Chen, H. M.; Yang, S. P.; Cheng, C. C.; Chen, H. L. Adv Mater 2010, 22, (5), 597-601.

31. Ravipati, S.; Kuo, C. J.; Shieh, J.; Chou, C. T.; Ko, F. H. Microelectron Reliab 2010, 50, (12), 1973-1976.

32. Shieh, J.; Lin, C. H.; Yang, M. C. J Phys D Appl Phys 2007, 40, (8), 2242-2246.

33. Shieh, J.; Ravipati, S.; Ko, F. H.; Ostrikov, K. J Phys D Appl Phys 2011, 44, (17), 174010- 174016.

34. Luo, Y. R.; in Comprehensive Handbook of Chemical Bond Energy, CRC press, 2007.

35. Kasap, S.; Koughia, C.; Singh, J.; Ruda H.; O’Leary, S. K.; in Springer Handbook of Electronic and Photonic Materials, ed. Kasap, S.; Capper, P.; Springer, 2006, ch. 3, pp. 47-77.
36. Kuo, M. L.; Poxson, D. J.; Kim, Y. S.; Mont, F. W.; Kim, L. K.; Schuhert, E. F.; Lin, S. Y. Opt Lett 2008, 33, (21), 2527-2529.

37. Macleod, H. A.; Thin Film Optical Filters, 3rd edn, Taylor & Francis, London, UK, 2001.38. Chao, Y. C.; Chen, C. Y.; Lin, C. A.; He, J. H. Energ Environ Sci 2011, 4, (9), 3436-3441.

Chapter-5
1. Bagnall, D. M. Boreland, M. Energy Policy 2008, 36, 4390.

2. Green, M. A. J. Mater. Sci.: Mater. Electron. 2007, 18, S15-S19.

3. Brendel, R. Sol. Energy 2004, 77, 969-982.

4. Minemoto, T.; Takakura, H. Jpn J Appl Phys 1 2007, 46, (7A), 4016-4020.

5. Verlinden, P. J.; Blakers, A. W.; Weber, K. J.; Babaei, J.; Everett, V.; Kerr, M. J.; Stuckings, M. F.; Gordeev, D.; Stocks, M., J. Sol Energ Mat Sol C 2006, 90, (18-19), 3422-3430.

6. Yoon, J.; Baca, A. J.; Park, S. I.; Elvikis, P.; Geddes, J. B.; Li, L. F.; Kim, R. H.; Xiao, J. L.; Wang, S. D.; Kim, T. H.; Motala, M. J.; Ahn, B. Y.; Duoss, E. B.; Lewis, J. A.; Nuzzo, R. G.; Ferreira, P. M.; Huang, Y. G.; Rockett, A.; Rogers, J. A. Nat Mater 2008, 7, (11), 907-915.

7. Mack, S.; Meitl, M. A.; Baca, A. J.; Zhu, Z. T.; Rogers, J. A. Appl Phys Lett 2006, 88, (21), 213101-3.

8. Ko, H. C.; Baca, A. J.; Rogers, J. A. Nano Lett 2006, 6, (10), 2318-2324.

9. Ahn, B. Y.; Duoss, E. B.; Motala, M. J.; Guo, X. Y.; Park, S. I.; Xiong, Y. J.; Yoon, J.; Nuzzo, R. G.; Rogers, J. A.; Lewis, J. A. Science 2009, 323, (5921), 1590-1593.

10. Baca, A. J.; Yu, K. J.; Xiao, J. L.; Wang, S. D.; Yoon, J.; Ryu, J. H.; Stevenson, D.; Nuzzo, R. G.; Rockett, A. A.; Huang, Y. G.; Rogers, J. A. Energ Environ Sci 2010, 3, (2), 208-211.

11. Yang, M. C.; Shieh, J.; Hsu, C. C.; Cheng, T. C. Electrochem Solid St 2005, 8, (10), C131-C133.

12. Shieh, J.; Ravipati, S.; Ko, F. H.; Ostrikov, K. J Phys D Appl Phys 2011, 44, (17), 174010- 6.

13. Shieh, J.; Hou, F. J.; Chen, Y. C.; Chen, H. M.; Yang, S. P.; Cheng, C. C.; Chen, H. L. Adv Mater 2010, 22, (5), 597-601.

14. Ravipati, S.; Kuo, C. J.; Shieh, J.; Chou, C. T.; Ko, F. H. Microelectron Reliab 2010, 50, (12), 1973-1976.

15. Ravipati, S.; Shieh, J.; Ko, F. H.; Yu, C. C.; Chen, H. L.; Wu, C. T.; Chen, S. H. Energ Environ Sci 2012, 5, (6), 7601-7605.

16. Huang, Y. F.; Chattopadhyay, S.; Jen, Y. J.; Peng, C. Y.; Liu, T. A.; Hsu, Y. K.; Pan, C. L.; Lo, H. C.; Hsu, C. H.; Chang, Y. H.; Lee, C. S.; Chen, K. H.; Chen, L. C. Nat Nanotechnol 2007, 2, (12), 770-774.

17. Dobrowolski, J. A.; Poitras, D.; Ma, P.; Vakil, H.; Acree, M. Appl Optics 2002, 41, (16), 3075-3083.

18. Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Nano Lett 2008, 8, (9), 2638-2642.

19. Chao, Y. C.; Chen, C. Y.; Lin, C. A.; He, J. H. Energ Environ Sci 2011, 4, (9), 3436-3441.

20. Macleod, H. A.; Thin Film Optical Filters, 3rd edn, Taylor & Francis, London, UK, 2001.

21. Diedenhofen, S. L.; Vecchi, G.; Algra, R. E.; Hartsuiker, A.; Muskens, O. L.; Immink, G.; Bakkers, E. P. A. M.; Vos, W. L.; Rivas, J. G. Adv Mater 2009, 21, (9), 973-978.

22. Adachi, M. M.; Anantram, M. P.; Karim, K. S. Nano Lett 2010, 10, (10), 4093-4098.

23. Wu, C.; Crouch, C. H.; Zhao, L.; Carey, J. E.; Younkin, R.; Levinson, J. A.; Mazur, E.; Farrell, R. M.; Gothoskar, P.; Karger, A. Appl Phys Lett 2001, 78, (13), 1850-1852.

24. Zhu, J.; Yu, Z. F.; Burkhard, G. F.; Hsu, C. M.; Connor, S. T.; Xu, Y. Q.; Wang, Q.; McGehee, M.; Fan, S. H.; Cui, Y. Nano Lett 2009, 9, (1), 279-282.

25. Kelzenberg, M. D.; Turner-Evans, D. B.; Putnam, M. C.; Boettcher, S. W.; Briggs, R. M.; Baek, J. Y.; Lewis, N. S.; Atwater, H. A. Energ Environ Sci 2011, 4, (3), 866-871.

26. Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo, J. R.; Atwater, H. A.; Lewis, N. S. Science 2010, 327, (5962), 185-187.

27. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A. Nat Mater 2010, 9, (3), 239-244.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top