跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張哲鳴
研究生(外文):Chang, Che-Ming
論文名稱:暫態噪音聲源方位追蹤
論文名稱(外文):Transient Noise Source Tracking
指導教授:胡竹生胡竹生引用關係
指導教授(外文):Hu, Jwu-Sheng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院聲音與音樂創意科技碩士學位學程
學門:藝術學門
學類:音樂學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:56
中文關鍵詞:暫態噪音聲源追蹤聲源到達角度估測聲音活動偵測
外文關鍵詞:Transient NoiseSource TrackingDOAVAD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出了一套偵測暫態噪音並使用麥克風陣列追蹤暫態噪音聲源方位的方法。麥克風接收的訊號經過時域振幅刪減法處理之後,可以非常有效的消除麥克風接收到的穩態與非穩態的非暫態噪音訊號對於偵測準確度的影響,對於語音也有一定的抑制效果。使得本方法在環境不理想時也有相當可靠的辨識率,可取代關鍵字做為另一種聲音喚醒機制的選擇。本方法對低維度的矩陣做運算,只需要幾個接收訊號的音框,同時從中辨識出只存在暫態噪音的音框,並只針對這些音框進行聲源方位追蹤,這樣運算量低的特性很適合應用於即時系統上。
This thesis presents a method of detecting transient noise using microphone array so the transient noise source orientation can be computed. Through the time-domain amplitude subtraction, the effect of both stationary and non-stationary noise in the microphone signal can be effectively eliminated. This includes signals such as voice. It is shown that this method is reliable when the environment is not ideal. This makes the method a better candidate to be a sound cue than key word based mechanism. This method operates on a low-dimensional matrix and needs only a few window frames of receive signals. Meanwhile the source location can also be determined from those frames. This low computational requirement makes it ideal for real-time applications.
摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表 列 VI
圖 列 VII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目標 2
1.3本研究創新說明 3
1.4 論文架構 3
第二章 背景技術介紹 4
2.1 Non-local diffusion filter 4
2.2 麥克風陣列訊號處理 9
2.3 訊號到達角度估測 12
2.3.1 Multiple Signals Classification Method (MUSIC) 12
2.3.2 Steered beamformer (SBF) 15

第三章 暫態噪音聲源方位估測演算法 16
3.1 演算法架構 17
3.2 暫態噪音活動偵測 18
3.3 暫態噪音聲源方位估測 30
第四章 實驗結果與分析 33
4.1 暫態噪音活動偵測實驗結果與分析 34
4.1.1 干擾聲源為穩態噪音 38
4.1.2 干擾聲源為非穩態噪音 41
4.1.3 干擾聲源為語音 44
4.2 暫態噪音聲源方位估測實驗結果與分析 47
第五章 結論 53
5.1 研究成果 53
5.2 未來展望 53
REFERENCE 54


[1] S.F. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. Acoust., Speech, Signal Process., vol.27, pp. 113-120, Apr. 1979.
[2] R. Talmon, I. Cohen, and S. Gannot, “Speech enhancement in transient noise environment using diffusion filtering,” Proc. 35th IEEE Internat. Conf. Acoust. Speech and Signal Process. (ICASSP-2010), Dallas, Texas, pp. 4782–4785, Mar. 2010.
[3] Wen-Jun Zeng and Xi-Lin Li, “High-Resolution Multiple Wideband and Nonstationary Source Localization With Unknown Number of Sources,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3125–3136, 2010.
[4] Eric A. Lehmann, ”Particle Filtering Methods for Acoustic Source Localisation and Tracking”, Ph.D. thesis, Australian National University (ANU), Canberra, Australia, July 2004.
[5] J.M. Valin, F.Michaud, and J. Rouat, “Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering.,” Robotics and Autonomous Systems Journal (Elsevier), vol. 55, no. 3, pp. 216 – 228, 2007.
[6] J.-S. Hu, M.-T. Lee, and T.-C. Wang, “Wake-Up-Word Detection for Robots Using Spatial Eigenspace Consistency and Resonant Curve Similarity,” Robotics and Automation, 2011. ICRA ’11. IEEE International Conference on, pp. 3901–3906, 2011.


[7] B. Scholkopf, A. Smola, and K. Muller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, pp. 1299–1319, 1996.
[8] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput., vol. 15, pp. 1373–1396, 2003.
[9] D. L. Donoho and C. Grimes, “Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data,” PNAS, vol. 100, pp.
5591–5596, 2003.
[10] J.B. Tenenbaum, V. de Silva and J. C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, volume 290, pages2319-2323, 2000
[11] S. Roweis and L. Saul. Nonlinear Dimensionality Reduction by Locally Linear embedding. Science,volume 290, pages 2323–2326, 2000
[12] H.-T. Chen, H.-W. Chang, and T.-L. Liu. Local Discriminant Embedding and Its Variants. In Proc. Int’l Conf. on Computer Vision and Pattern Recognition, volume 2, pages 846-853, 2005.
[13] R. Coifman and S. Lafon, “Diffusion maps,” Appl. Comput. Harmon.Anal., vol. 21, pp. 5–30, Jul. 2006}
[14] B. Nadler, S. Lafon, R. Coifman, and I. G. Kevrekidis, “Diffusion maps,spectral clustering and reaction coordinates of dynamical systems,” Appl.Comput. Harmon. Anal., pp. 113–127, 2006.
[15] A. Singer, Y. Shkolnisky, and B. Nadler, “Diffusion interpretation of nonlocal neighborhood filters for signal denoising,” SIAM Journal ImagingSciences, vol. 2, no. 1, pp. 118–139, 2009.

[16] R. Talmon, I. Cohen, and S. Gannot, “Transient noise reduction using nonlocal diffusion filters,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 6, pp. 1584–1599, Aug. 2011.
[17] R. Talmon, I. Cohen, S. Gannot, and R. R. Coifman, “Supervised Graph-Based Processing for SequentialTransient Interference Suppression,” IEEE Trans. Audio, Speech, Lang. Process., vol.20, no. 9, pp. 2528–2538, Aug. 2011.
[18] R.O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation”, IEEE Trans. Antennas and Propag., vol. AP-34, no. 3, pp.276-280,March 1986.
[19] J. L. Flanagan, J. D. Johnston, R. Zahn, and G. W. Elko, ”Computer-steered microphone arrays for sound transduction in large rooms,” J. Acoust. Soc. Am., vol. 78 Issue 5 pp. 1508-1518, July 1985.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top