|
[1] S.F. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. Acoust., Speech, Signal Process., vol.27, pp. 113-120, Apr. 1979. [2] R. Talmon, I. Cohen, and S. Gannot, “Speech enhancement in transient noise environment using diffusion filtering,” Proc. 35th IEEE Internat. Conf. Acoust. Speech and Signal Process. (ICASSP-2010), Dallas, Texas, pp. 4782–4785, Mar. 2010. [3] Wen-Jun Zeng and Xi-Lin Li, “High-Resolution Multiple Wideband and Nonstationary Source Localization With Unknown Number of Sources,” IEEE Trans. Signal Process., vol. 58, no. 6, pp. 3125–3136, 2010. [4] Eric A. Lehmann, ”Particle Filtering Methods for Acoustic Source Localisation and Tracking”, Ph.D. thesis, Australian National University (ANU), Canberra, Australia, July 2004. [5] J.M. Valin, F.Michaud, and J. Rouat, “Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering.,” Robotics and Autonomous Systems Journal (Elsevier), vol. 55, no. 3, pp. 216 – 228, 2007. [6] J.-S. Hu, M.-T. Lee, and T.-C. Wang, “Wake-Up-Word Detection for Robots Using Spatial Eigenspace Consistency and Resonant Curve Similarity,” Robotics and Automation, 2011. ICRA ’11. IEEE International Conference on, pp. 3901–3906, 2011.
[7] B. Scholkopf, A. Smola, and K. Muller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, pp. 1299–1319, 1996. [8] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput., vol. 15, pp. 1373–1396, 2003. [9] D. L. Donoho and C. Grimes, “Hessian eigenmaps: New locally linear embedding techniques for high-dimensional data,” PNAS, vol. 100, pp. 5591–5596, 2003. [10] J.B. Tenenbaum, V. de Silva and J. C. Langford. A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science, volume 290, pages2319-2323, 2000 [11] S. Roweis and L. Saul. Nonlinear Dimensionality Reduction by Locally Linear embedding. Science,volume 290, pages 2323–2326, 2000 [12] H.-T. Chen, H.-W. Chang, and T.-L. Liu. Local Discriminant Embedding and Its Variants. In Proc. Int’l Conf. on Computer Vision and Pattern Recognition, volume 2, pages 846-853, 2005. [13] R. Coifman and S. Lafon, “Diffusion maps,” Appl. Comput. Harmon.Anal., vol. 21, pp. 5–30, Jul. 2006} [14] B. Nadler, S. Lafon, R. Coifman, and I. G. Kevrekidis, “Diffusion maps,spectral clustering and reaction coordinates of dynamical systems,” Appl.Comput. Harmon. Anal., pp. 113–127, 2006. [15] A. Singer, Y. Shkolnisky, and B. Nadler, “Diffusion interpretation of nonlocal neighborhood filters for signal denoising,” SIAM Journal ImagingSciences, vol. 2, no. 1, pp. 118–139, 2009.
[16] R. Talmon, I. Cohen, and S. Gannot, “Transient noise reduction using nonlocal diffusion filters,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 6, pp. 1584–1599, Aug. 2011. [17] R. Talmon, I. Cohen, S. Gannot, and R. R. Coifman, “Supervised Graph-Based Processing for SequentialTransient Interference Suppression,” IEEE Trans. Audio, Speech, Lang. Process., vol.20, no. 9, pp. 2528–2538, Aug. 2011. [18] R.O. Schmidt, “Multiple Emitter Location and Signal Parameter Estimation”, IEEE Trans. Antennas and Propag., vol. AP-34, no. 3, pp.276-280,March 1986. [19] J. L. Flanagan, J. D. Johnston, R. Zahn, and G. W. Elko, ”Computer-steered microphone arrays for sound transduction in large rooms,” J. Acoust. Soc. Am., vol. 78 Issue 5 pp. 1508-1518, July 1985.
|