|
[1] Al-Maskari, A., Sanderson, M. and Clough P. The Relationship between IR effectiveness measures and user satisfaction. In SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, p.p. 23-27, 2007. [2] Backstrom, L. and Leskovec, J. Supervised Random Walks: Predicting and recommending links in social networks. In WSDM ’11: Proceedings of the 4th International Conference on Web Search and Web Data Mining, p.p. 635-644, 2011. [3] Brin, S. and Page, L. The anatomy of a large-scale hypertextual web search engine. In Computer Networks and ISDN Systems, 30(1-7):107-117, April 1998. [4] Broyden, C. G. The convergence of a class of double-rank minimization algorithms. In Journal of the institute of Mathematics and Its Applications 6, p.p. 76-90. [5] Clements, M., Vries, A. P., and Reinders, M. I. J. The influence of personalization on tag query length in social media search. In Information Processing and Management, p.p. 403-412, 2010. [6] Clements, M., Vries, A. P., and Reinders, M. I. J. The Task-Dependent Effect of Tags and Ratings on Social Media Access. In ACM Transactions on Information Systems, Vol. 28, No. 4, Article 21, Nov. 2010. [7] Fletcher, R. A New Approach to variable metric algorithms. In Computer Journal 13(3), p.p. 317-322. [8] Fletcher, Roger. Practical methods of optimization (2nd ed.), New York: John Wiley & Sons. [9] Goldfarb, D. A family of variable metric updates derived by variational means. In Mathematics of Computation 24 (109), p.p. 23-26. [10] Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. An algorithmic framework for performing collaborative filtering. In SIGIR ’99: Proceedings of the 22nd annual international ACM SIGIR conference o Research and development in information retrieval, p.p. 230-247, 1999. [11] Hotho, A., Jäschke, R., Schmitz, C. and Stumme, G. Information retrieval in folksonomies: search and ranking. In ESWC ’06: Proceedings of the 3rd European conference on The Semantic Web: research and applications, p.p. 411-426, 2006. [12] Järvelin, K. and Kekäläinen, J. Cumulative gain-based evaluation of IR techniques. In ACM Transactions on Information Systems 20, p.p. 422-446, 2002. [13] Konstas, I., Stathopoulos, V. and Jose, J. M. On social networks and collaborative recommendation. In SIGIR ’09: Proceedings of the 32th annual international ACM SIGIR conference on Research and development in information retrieval, p.p. 19-23, 2009. [14] Liu, D. and Nocedal, J. On the limited memory bfgs method for large scale optimization. In Mathematical Programming, pp. 45:503-528, 1989. [15] Liu, T.Y. Learning to Rank for Information Retrieval. Springer-Verlag Berlin Heidelberg. [16] Marinho, L. B., Nanopoulos, A., Schmidt-Thieme, L., Jäschke, R., Hotho, A., Stumme, G. and Symeonidis, P. Social tagging recommendation systems. In Recommender System Handbook, p.p. 615-632, 2011 [17] .Milicevic, A. K., Nanopoulos, A. and Ivanovic, M. Social tagging in recommender systems: A survey of the state-of-art and possible extensions. In Artificial Intelligence Review, Volume 33 Issue 3, March 2010, p.p. 187-209, 2010. [18] Parra, D. and Brusilovsky, P. Collaborative filtering for social tagging systems: An experiment with CiteULike. In RecSys ’09: Proceedings of the 2009 ACM conference on Recommender Systems, p.p. 237-240, 2009. [19] Parra-Santander, D. and Brusilovsky, R. Improving collaborative filtering in social tagging systems for the recommendation of scientific articles. In IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, vol. 1, pp.136-142, 2010. [20] Qin T., Liu, T.Y., Li, H. A general approximation framework for direct optimization of information retrieval measures. In Information Retrieval 13(4), p.p. 375-397, 2009. [21] Rae, A., Sigurbjörnsson, B. and Zwol, R. Improving Tag Recommendation Using Social Networks. In RIAO’ 10: 9th Recherche d'Information Assistée par Ordinateur Conference Adaptivity, Personalization and Fusion of Heterogeneous Information, 2010. [22] Salton, G. and Buckley, C. Term-weighting approaches in automatic text retrieval. In Information Processing and Management, 24(5), p.p. 513-523, 2010. [23] Shanno, David F. Conditioning of quasi-Newton methods for function minimization. In Math. Comput. 24(111), p.p. 647-656. [24] Taylor, M., Guiver, J., et al. Softrank: optimising non-smooth rank metrics. In WSDM ’08: Proceedings of the 1st International Conference on Web Search and Web Data Mining, p.p. 77-86, 2008. [25] Valizadegan, H., Jin, R., Zhang, R. and Mao J. Learning to rank by optimizing NDCG measure. In Neural Information Processing Systems, 2010. [26] Wu, X., Zhang, L. and Yu, Y. Exploring social annotations for the semantic web. In WWW ’06: Proceedings of the 15th international conference on World Wide Web, p.p. 417-426, 2006. [27] Yan, L., Dodier, R., Mozer, M. and Wolniexicz, R. Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In ICML ’03: The 20th International Conference on Machine Learning, p.p. 848-855, 2003.
|