跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳羿丞
研究生(外文):Chen, Yi-Cheng
論文名稱:以改良型航位推算法與粒子過濾演算法實現在2.5D環境中的室內定位
論文名稱(外文):Indoor Localization with Improved Dead-Reckoning and Particle-Filtering in 2.5D Spaces
指導教授:曾煜棋曾煜棋引用關係
指導教授(外文):Tseng, Yu-Chee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:37
中文關鍵詞:人體感測慣性感測單元位置跟踪行人航位推算無線感測網路
外文關鍵詞:body sensinginertial measurement unitlocation trackingpedestrian dead-reckoningwireless sensor network
相關次數:
  • 被引用被引用:2
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
最近,使用慣性感測器的行人航位推算法吸引相當的關注。
行人航位推算法的主要缺點是加速度計和陀螺儀容易產生累積誤差。
被稱為零速度更新法的技術嘗試去辨識腳掌停在地板上的時間點來校準移動速度。
然而,它需要傳感器安裝在腳的底部,因此會造成過大的振動(當使用者正在跑步),這有時會導致測量的速度和方向有很大的定位誤差。
本論文提出兩個能夠自動校準的行人航位推算法模型並且集成2.5D室內地圖資料以及粒子過濾器。
行人航位推算法模型分別用於走路和跑步,各稱為走路速度更新法與跑步速度更新法。
這些模型需要兩個/三個傳感器安裝在上半身/大腿/小腿,以期能在正確的時刻更新使用者的走路/跑步速度。
然後,我們考慮在一個多樓層建築採取這兩種模型的定位,並集成2.5D室內地圖資料。
粒子過濾器是用來過濾使用者的潛在位置。
我們更觀察到,如果使用者通過一些特殊區域(例如電梯或樓梯),慣性感測器會出現一些特殊的特徵。
因此,我們可以考慮這些特徵的當作地標校準定位結果。
我們已經開發了一個系統原型,並且進行廣泛的實驗。
結果表明當使用者走路時,走路速度更新法的軌跡更接近原來的形狀。
跑步速度更新法在使用者在跑步時的表現比其他方法更好。
Using inertial sensors for pedestrian dead-reckoning (PDR) has attracted considerable attention recently.
PDR's main drawback is that accelerometers and gyroscopes are prone to accumulated errors.
The Zero Velocity Update (ZUPT) technique tries to identify the moment when the sole is on the ground to calibrate the moving speed.
However, it requires that the sensor is mounted near the bottom of the foot, which sometimes results large positioning errors due to the excessive vibration in the measurement of the velocity and orientation (e.q., when users are running).
This thesis proposes two self-calibrating PDR models and integrates them with the Indoor 2.5-D Floor Plan model by the Particle Filters.
The PDR models called Walking Velocity Update (WUPT) and Running Velocity Update (RUPT), are used for walking and running, respectively.
These models require two/three sensors mounted on the upper body/upper leg/lower leg, which collaboratively calibrate the walking/running velocities of users at proper moments.
Then, we consider the localization in a multi-floor building by taking these two models with 2.5D floor plan.
The particle filters are used to respect the user's potential locations.
We observe that the inertial sensors which are carried by users who pass through the special areas (e.g., elevators or stairways) have the identifiable signatures.
Thus, we can consider these signatures as the landmarks to calibrate the location estimation.
We have developed a prototype and conducted extensive experiments of our models.
Results show that the trajectories of WUPT are closer to the original shape when the users are walking.
The RUPT performs better than others when the users are running.
Contents
Chinese Abstract i
English Abstract ii
Acknowledgment iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
2 Related work 4
2.1 Walking/Running Posture and PDR models . . . . . . . . . . . . . . . . . . . . 4
2.2 Bayesian and Particle Filter model . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 System Design 8
3.1 2.5D Space and Indoor 2.5D Floor Plan Model . . . . . . . . . . . . . . . . . . . 9
3.2 The Particle Filter for Indoor Localization . . . . . . . . . . . . . . . . . . . . . 11
3.2.1 Behavior-Predicting Module . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Particle-Sampling Module . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Particle-Weighting Module . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.4 Particle Resampling Module . . . . . . . . . . . . . . . . . . . . . . . . . 23
4 Implementation and Experiments 24
4.1 Implementation . . . . . . . . . . . . . . . . . . . 24
4.2 Experiments . . . . . . . . . . . . . . . . . . . 25
4.2.1 Experiment 1: Straight-Route Test in Open Space . 25
4.2.2 Experiment 2: Square-Route Test in Open Space . . .28
4.2.3 Experiment 3: Corridor-Route Test in Indoor Space .30
4.2.4 Experiment 4: Multi-Floor Test . . . . . . . . . . 32
5 Conclusions 34
Bibliography 35
[1] M. Alzantot and M. Youssef. Crowdinside: automatic construction of indoor floorplans. In
Proceedings of the 20th International Conference on Advances in Geographic Information
Systems, SIGSPATIAL ’12, pages 99–108, New York, NY, USA, 2012. ACM.
[2] S. Beauregard, M. Klepal, et al. Indoor pdr performance enhancement using minimal map
information and particle filters. In Position, Location and Navigation Symposium, 2008
IEEE/ION, pages 141–147. IEEE, 2008.
[3] T. Best, J. McElhaney, W. Garrett Jr, and B. Myers. Axial strain measurements in skeletal
muscle at various strain rates. Journal of Biomechanical Engineering ., 117:262 –265, 1995.
[4] A. Doucet, S. Godsill, and C. Andrieu. On sequential monte carlo sampling methods for
bayesian filtering. Statistics and Computing, 10(3):197–208, July 2000.
[5] E. Foxlin. Pedestrian tracking with shoe-mounted inertial sensors. Computer Graphics
and Applications, IEEE, 25(6):38 –46, 2005.
[6] A. Jimenez, F. Seco, C. Prieto, and J. Guevara. A comparison of pedestrian dead-reckoning
algorithms using a low-cost mems imu. In Intelligent Signal Processing, 2009. WISP 2009.
IEEE International Symposium on, pages 37 –42, aug. 2009.
[7] N. Kothari, B. Kannan, E. D. Glasgwow, and M. B. Dias. Robust indoor localization on
a commercial smart phone. Procedia Computer Science, 10:1114–1120, 2012.
[8] S.-P. Kuo, S.-C. Lin, B.-J. Wu, Y.-C. Tseng, and C.-C. Shen. GeoAds: A Middleware
Architecture for Music Service with Location-Aware Advertisement. In IEEE Int’l Conf.
on Mobile Ad-hoc and Sensor Systems (MASS), 2007.
[9] H.-Y. Lau, K.-Y. Tong, and H. Zhu. Support vector machine for classification of walking
conditions using miniature kinematic sensors. Med. Biol. Engineering and Computing,
(6):563–573.
[10] J. Lester, T. Choudhury, and G. Borriello. A practical approach to recognizing physical
activities. In Proceedings of the 4th international conference on Pervasive Computing,
PERVASIVE’06, pages 1–16, Berlin, Heidelberg, 2006. Springer-Verlag.
[11] C.-C. Lo, C.-P. Chiu, Y.-C. Tseng, S.-A. Chang, and L.-C. Kuo. A walking velocity update
technique for pedestrian dead-reckoning applications. In Personal Indoor and Mobile Radio
Communications (PIMRC), 2011 IEEE 22nd International Symposium on, pages 1249–
1253. IEEE, 2011.
[12] C.-C. A. Lo, T.-C. Lin, Y.-C. Wang, Y.-C. Tseng, L.-C. Ko, , and L.-C. Kuo. Using
intelligent mobile devices for indoor wireless location tracking, navigation, and mobile
augmented reality. In IEEE VTS Asia Pacific Wireless Commun. Symposium (APWCS),
2010.
[13] L. Ojeda and J. Borenstein. Personal dead-reckoning system for gps-denied environments.
In Safety, Security and Rescue Robotics, 2007. SSRR 2007. IEEE International Workshop
on, pages 1 –6, 2007.
[14] S. K. Park and Y. S. Suh. A zero velocity detection algorithm using inertial sensors for
pedestrian navigation systems. Sensors (Basel), 10(10):9163–78, 2010.
[15] A. R. Pratama, R. Hidayat, et al. Smartphone-based pedestrian dead reckoning as an
indoor positioning system. In System Engineering and Technology (ICSET), 2012 Inter-
national Conference on, pages 1–6. IEEE, 2012.
[16] S. Shin, C. Park, J. Kim, H. Hong, and J. Lee. Adaptive step length estimation algorithm
using low-cost mems inertial sensors. In Sensors Applications Symposium, 2007. SAS ’07.
IEEE, pages 1 –5, 2007.
[17] C.-M. Su, J.-W. Chou, C.-W. Yi, Y.-C. Tseng, and C.-H. Tsai. Sensor-aided personal
navigation systems for handheld devices. In Proceedings of the 2010 39th International
Conference on Parallel Processing Workshops, ICPPW ’10, pages 533–541, Washington,
DC, USA, 2010. IEEE Computer Society.
[18] L. Sun, D. Zhang, B. Li, B. Guo, and S. Li. Activity recognition on an accelerometer
embedded mobile phone with varying positions and orientations. In Proceedings of the 7th
international conference on Ubiquitous intelligence and computing, UIC’10, pages 548–562,
Berlin, Heidelberg, 2010. Springer-Verlag.
[19] Z. Sun, X. Mao, W. Tian, and X. Zhang. Activity classification and dead reckoning
for pedestrian navigation with wearable sensors. Measurement Science and Technology,
20(1):015203, 2009.
[20] D. Thelen, E. Chumanov, D. Hoerth, T. Best, S. Swanson, M. LI, L; Young, and B. Hei-
derscheit. Hamstring muscle kinematics during treadmill sprinting. Medicine and Science
in Sports and Exercise., 37(1):108 –114, 2005.
[21] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo localization for mobile
robots. Artificial Intelligence, 128(1–2):99 – 141, 2001.
[22] H. Wang, H. Lenz, A. Szabo, J. Bamberger, and U. D. Hanebeck. Wlan-based pedestrian
tracking using particle filters and low-cost mems sensors. In Positioning, Navigation and
Communication, 2007. WPNC’07. 4th Workshop on, pages 1–7. IEEE, 2007.
[23] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury. No need
to war-drive: unsupervised indoor localization. In Proceedings of the 10th international
conference on Mobile systems, applications, and services, MobiSys ’12, pages 197–210, New
York, NY, USA, 2012. ACM.
[24] O. Woodman and R. Harle. Pedestrian localisation for indoor environments. In Proceedings
of the 10th international conference on Ubiquitous computing, pages 114–123. ACM, 2008.
[25] X. Yun, E. Bachmann, H. Moore, and J. Calusdian. Self-contained position tracking of hu-
man movement using small inertial/magnetic sensor modules. In Robotics and Automation,
2007 IEEE International Conference on, pages 2526 –2533, 2007.
[26] X. Yun, J. Calusdian, E. R. Bachmann, and R. B. McGhee. Estimation of human foot
motion during normal walking using inertial and magnetic sensor measurements. Instru-
mentation and Measurement, IEEE Transactions on, 61(7):2059–2072, 2012.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top