跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林晏增
研究生(外文):Lin, Yen-Tseng
論文名稱:高效率之多元件堆疊結構有機太陽能電池
論文名稱(外文):Multiple-device Stacked Structures for High-performance Organic Solar Cells
指導教授:陳方中陳方中引用關係
指導教授(外文):Chen, Fang-Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:77
中文關鍵詞:多元件堆疊結構半透明元件
外文關鍵詞:multiple-device stacked structuressemitransparent device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究中我們利用多元件堆疊結構製作有機太陽能電池以達到高的功率轉換效率。其中半透明子元件採用三氧化鉬/銀的雙層結構製作反式半透明電極,主動層部分使用一個低能隙的高分子材料。之後我們嘗試在此透明元件之後堆疊上另一個具互補吸收之主動層材料子元件,利用吸收前面反式結構透明元件穿透之後剩下的光,將入射光達到最大吸收應用。另外在兩個子元件接面處塗佈可照紫外光硬化的的環氧樹脂,以消除接面處因空氣造成的折射率不匹配現象。將兩個元件串聯或並聯,由於兩個子元件具互補吸收,此多元件堆疊結構的整體能量轉換效率在標準量測環境下可達6.47%。
最後,著眼於未來軟性電子如要邁向實用化及商品化,在大面積製程上就必須要有所突破和發展。在此,我們採用了SMDPPEH/PC60BM做為主動層材料,在旋轉塗佈製程及刮刀塗佈製程下製作元件,在旋轉塗佈製程下效率可達4.42%,而在刮刀塗佈製程下效率可達4.02%。

In this work, we employed multiple-device stacked structures for organic solar cells for obtaining high power conversion efficiencies (PCEs). The semitransparent (ST) subcell adopted an inverted structure and the semitransparent anode was made of a MoO3/Ag bilayer electrode. The active layer was a low-band-gap polymer material. The second subcell featuring complementary absorptions was then stacked onto the ST device and two subcells were connected either in series or in parallel. UV-curable epoxy was further used to eliminate the air-gap and the mismatch of reflection indexes at the interface. Because the two subcells had complementary absorptions, the stacked structure exhibited an improved power conversion efficiencies (PCEs) of 6.47% under illumination at one sun.
Additionally, small molecular-based bulk hetero-junction solar cell consisting of
2,5-di-2-(ethylhexyl)-3,6-bis-(5′′-n-hexyl – [2,2′,5′,2′′]terthiophen-5-yl) – pyrrolo[3,4-
c]pyrrole-1,4-dione (SMDPPEH) and (1-(3-methoxycarbonyl)propyl-1-pheny[6,6]methanofullerene ([60]PCBM) were fabricated by both blade coating process and spin coating process. The PCE was 4.07%, almost as high as which was the efficiency obtained by spin coating process (4.42%).

目錄
中文題要 ……………………………………………………………………I
英文題要 ……………………………………………………………………II
誌謝 ……………………………………………………………………IV
目錄 ……………………………………………………………………V
表目錄 ……………………………………………………………………VII
圖目錄 ……………………………………………………………………VIII
一、 緒論 1
1.1 前言 1
1.2 有機太陽能電池發展 2
1.2.1 單層結構 2
1.2.2 雙層異質接面 (Planar Hetrojunction, PHJ) 2
1.2.3 混合總體異質接面 (Bulk Hetrojunction, BHJ) 4
1.2.4 透明電極的相關應用 5
1.2.5 高效率之半透明反式有機薄膜太陽能電池 13
1.3 有機太陽能電池工作原理 15
1.4 有機太陽能電池基本特性分析 18
1.5 太陽能光譜 24
1.6研究動機與目的 26
二、 實驗架構 27
2.1 實驗材料 27
2.2 實驗儀器 32
2.3 光學模擬軟體 37
2.4 元件製作流程 37
2.4.1 反式結構透明元件 37
2.4.2高效率互補吸收元件 42
三、 實驗結果與討論 45
3.1單層元件製作 45
3.1.1 透明電極元件 45
3.1.2高效率之互補吸收元件 53
3.2堆疊(stack)元件結構 55
3.2.1 堆疊結構的材料之吸收匹配 55
3.2.2 兩個元件接面貼合及折射率之匹配 57
3.2.3 堆疊結構的元件表現 58
4.2.4 堆疊結構元件之光學模擬情形 62
四、 大面積製程之有機薄膜太陽能電池 65
4.1 簡介 65
4.2 元件製程 66
4.2.1 使用旋轉塗佈法製作元件 66
4.2.2 使用刮刀塗佈法製作元件 67
4.3 結果與討論 69
4.4結論 72
五、 結論 73
參考資料 74



1. Nunzi, J.M., Organic photovoltaic materials and devices, Comptes Rendus Physique, 3, 523 (2002).
2. Green, M.A.., K. Emery, Y. Hishikawa, and W. Warta, Solar cell efficiency tables (Version 41), Progress in Photovoltaics: Research and Applications, 21, 1 (2013).
3. Krebs, F.C., H. Spanggard, T. Kjar, M. Biancardo, and J. Alstrup, Large area plastic solar cell modules, Materials Science and Engineering: B, 138, 106 (2007).
4. H. Kallman, M. Pope, Photovoltaic effect in organic crystals, J. Chem. Phys, 30, 585 (1985).
5. Ghosh, A. K., Feng, Merocyanine organic solar cells, Journal of Applied Physics, 49, 5982 (1978).
6. Spanggaard, H. and F.C. Krebs, A brief history of the development of organic and polymeric photovoltaics, Solar Energy Materials and Solar Cells, 83, 125 (2004).
7. Tang, C.W, Two-layer organic photovoltaic cell, Applied Physics Letters, 48, 183 (1986).
8. G. Yu, C. Zhang, and A. H. Heeger, Dual-Function Semiconducting Polymer Devices – Light-Emitting And Photodetecting Diodes, Appl. Phys. Lett, 64, 1540 (1994).
9. H.W.Kroto,J.R.Heath,S.C.O'Brien,R.F.Curl and R.E.Smalley, C60: Buckminsterfullerene, Nature, 318, 162 (1985).
10. Peumans, P., A. Yakimov, and S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells, Journal of Applied Physics, 93, 3693(2003).
11. Xue, J., B. Rand, S. Uchida, and S. Forrest, A Hybrid Planar-Mixed Molecular Heterojunction Photovoltaic Cell. Advanced Materials, 17(1): p. 66-71 (2005).
12. J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell, Applied Physics Letters, 68, 3120 (1996).
13. N.S.Sariciftci, L.Smilowitz, A.J.Heeger, F.Wudl, Photoinduced electron transfer from a conducting polymer to buckminsterfullerene, Science, 258, 1474 (1992).
14. G. Yu, J. Gao, J. Hummelen, F. Wudl, A.J. Heeger, Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions, Science, 270, 1789 (1995).
15. Brabec, C.J., N.S. Sariciftci, and J.C. Hummelen, Plastic Solar Cells, Advanced Functional Materials, 11, 15 (2001).
16. Li, G., V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends, Nat Mater, 4, 864 (2005).
17. Liang, Y., Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, For the Bright Future -Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Advanced Materials, 22, 135 (2010).
18. from Heliatek
http://www.heliatek.com/newscenter/latest_news/neuer-weltrekord-fur-organische-solarzellen-heliatek-behauptet-sich-mit-12-zelleffizienz-als-technologiefuhrer/
19. Ameri, T., G. Dennler, C. Lungenschmied, and C.J. Brabec, Organic tandem solar cells: A review, Energy &; Environmental Science, 2, 347 (2009).
20. A.Hasipour, B.de Boer and P.W.M.Blom, Organic Tandem and Mul ti-Junction Solar Cell, Advanced Functional Materials, 18, 169 (2008).
21. G.Gu,V.Bulovic, S.R.Forrest and M.E.Thompson, transparent organic light emitting diode, Applied Physics Letters, 68, 2606 (1996).
22. R.B.Pode,C.J.Lee,D.G.Moon and J.I.Han, Transparent conducting metal electrode for top emission organic light-emitting devices: Ca–Ag double layer, Applied Physics Letters, 87, 4614 (2004).
23. T.F.Guo, F.S.Yang, Z.J.Tsai, G.W.Feng, T.C.Wen, S.N.Hsieh, C.T.Chung and C.I.Wu, High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode, Applied Physics Letters, 89, 051103 (2006).
24. C.W.Chen, P.Y.Hsieh, H.H.Chiang, C.L.Lin, H.M.Wu and C.C.Wu, Top-emitting organic light-emitting devices using surface-modified ag anode, Applied Physics Letters, 83, 5127 (2003).
25. V.Shrotriya, E.H.Wu, G.Li, Y.Yao and Y.Yang, Efficient light harvesting in multiple-device stacked structure for polymer solar cells, Applied Physics Letters, 88, 064104 (2006).
26. G.Li, C.W.Chu, J.Huang and Y.Yang, Efficient inverted polymer solar cells, Applied Physics Letters, 88, 253503 (2006).
27. Chou, C. H. et al., Metal-oxide interconnection layer for polymer tandem solar
cells with an inverted architecture, Advanced Materials, 23, 1282 (2011).
28. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, Y. Yang, Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells, Advanced Materials, 24, 3046 (2012).
29. White, M. S. et al., Inverted bulk-heterojunction organic photovoltaic device
using a solution-derived ZnO underlayer, Applied Physics Letters, 89, 143517 (2006).
30. Liao, H-H. et al., Highly efficient inverted polymer solar cell by low temperature
annealing of Cs2CO3 interlayer, Applied Physics Letters, 92, 173303 (2008).
31. Yinhua Zhou, Hyeunseok Cheun, Seungkeun Choi, William J. Potscavage, Jr.,Canek Fuentes-Hernandez, and Bernard Kippelen, Indium tin oxide-free and metal-free semitransparent organic solar cells, Applied Physics Letters, 97, 153304 (2010).
32. Andreas Bauer, Tina Wahl, Jonas Hanisch, and Erik Ahlswede, ZnO:Al cathode for highly efficient, semitransparent 4% organic solar cells utilizing TiOX and aluminum interlayers, Applied Physics Letters, 100, 073307 (2012).
33. C.C. Chen, L. Dou, R. Zhu, C.H. Chung, T.B. Song, Y. B. Zheng, S. Hawks, G. Li, P. S. Weiss, and Y. Yang, Visibly Transparent Polymer Solar Cells Produced by Solution Processing, ACS Nano, 6, 7185 (2012)
34. J. Krantz, T. Stubhan, M. Richter, S. Spallek, I. Litzov, G. J. Matt, E. Spiecker, C. J. Brabec, Spray-Coated Silver Nanowires as Top Electrode Layer in Semitransparent P3HT:PCBM-Based Organic Solar Cell Devices, Advanced Functional Materials, 23, 1711 (2013)
35. K.S. Chen, J.F. Salinas, H.L. Yip, L. Huo, J. Hou, A. K. Y. Jen, Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications, Energy &; Environmental Science, 5, 9551 (2012)
36. Moliton, A. and J.-M. Nunzi, How to model the behaviour of organic photovoltaic cells, Polymer International, 55, 583 (2006).
37. from Solarlux: http://www.eyesolarlux.com/Solar-simulation-energy.htm
38. from H.C. Starck: http://www.clevios.com/
39. M. A. Ibrahem, H.Y. Wei, M.H. Tsai, K.C. Ho, J.J. Shyue, C. W. Chu, Solution-processed zinc oxide nanoparticles as interlayer materials for inverted organic solar cells. Solar Energy Materials and Solar Cells, 108, 156.(2013)
40. Hua-Hsien Liao, Li-Min Chen, Zheng Xu, Gang Li, and Yang Yang,Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer. Applied Physics Letters. 92, 173303 (2008).
41. from wikipedia http://en.wikipedia.org/wiki/File:AFM_schematic_(EN).svg
42. Photovoltaic devices Part 1: Measurement of Photovoltaic Current-Voltage Characteristics Standard IEC 60904-1, International Electrotechnical Commission, Geneva, Switzerland.
43. X. Guogang, Y. Xirui, Y. Tao, B. Chunxiong, Z. Jiyuan, G. Jie, H. Huan, T. Zekun, and Z. Zhigang, Understanding of the chopping frequency effect on IPCE measurements for dye-sensitized solar cells: from the viewpoint of electron transport and extinction spectrum, Journal of Physics D: Applied Physics, 45, 425104 (2012).
44. from PerkinElmer http://www.perkinelmer.com
45. P.L. T. Boudreault, A. Najari, M. Leclerc, Processable Low-Bandgap Polymers for Photovoltaic Applications, Chemistry of Materials, 23, 456.(2008).
46. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells, Advanced Materials. 23, 4636 (2011).
47. G. Li, R. Zhu, Y. Yang, Polymer solar cells, Nat Photon, 6, 153 (2012).
48. Y. Sun, G. C. Welch, W. L. Leong, C. J. Takacs, G. C. Bazan, A. J. Heeger, Solution-processed small-molecule solar cells with 6.7% efficiency, Nat Mater. 11, 44 (2012).
49. H.-L. Yip, A. K. Y. Jen, Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells, Energy &; Environmental Science, 5, 5994 (2012).
50. F. C. Krebs, S. A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. Journal of Materials Chemistry, 19, 5442 (2009).
51. F. C. Krebs, All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps, Organic Electronics, 10, 761 (2009).
52. T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, J. Poortmans. Polymer based organic solar cells using ink-jet printed active layers, Applied Physics Letters, 92, 033306 (2008).
53. Chun-Yu Chen et al., Continuous blade coating for multi-layer large-area organic light-emitting diode and solar cell, Journal of Applied Physics, 110, 094501 (2011).
54. Y.-H. Chang, S.-R. Tseng, C.-Y. Chen, H.-F. Meng, E.-C. Chen, S.-F. Horng, C.-S. Hsu, Polymer solar cell by blade coating, Organic Electronics, 10, 741 (2011).
55. A. B. Tamayo, X.-D. Dang, B. Walker, J. Seo, T. Kent, T.-Q. Nguyen, A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells, Applied Physics Letters, 94, 103301 (2009).
56. B. Ray, P. R. Nair, M. A. Alam, Morphology dependent short circuit current in bulk heterojunction solar cell, presented at Photovoltaic Specialists Conference (PVSC). 2010 35th IEEE (2010).
57. B. Ray, P. R. Nair, M. A. Alam, Can morphology tailoring improve the open circuit voltage of organic solar cells?, Applied Physics Letters, 100, 013307 (2012).
58. Mariano Campoy-Quiles, Toby Ferenczi, Tiziano Agostinelli, Pablo G. Etchegoin, Youngkyoo Kim, Thomas D. Anthopoulos, Paul N. Stavrinou, Donal D. C. Bradley&; Jenny Nelson, Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends, Nat Mater, 7,158-164 (2008)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top