跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江俊賢
論文名稱:三閘極金氧半場效電晶體利用基極偏壓調變臨界電壓
論文名稱(外文):Investigation and Modeling of Threshold-Voltage Modulation through Substrate Bias for Tri-gate MOSFETs
指導教授:蘇彬
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:64
中文關鍵詞:三閘極金氧半場效電晶體基極偏壓調變臨界電壓
外文關鍵詞:Tri-gate MOSFETsThreshold-Voltage Modulation through Substrate Bias
相關次數:
  • 被引用被引用:0
  • 點閱點閱:371
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討三閘極金氧半場效電晶體藉由基極偏壓調變臨界電壓的可行性。我們利用三維原子等級模擬探討隨機參雜濃度變動(Random Dopant Fluctuation)對於BULK三閘極元件中Punch-Through-Stopper (PTS)區域的影響。我們的研究發現藉由高濃度摻雜的PTS區域雖能有效的幫助基極偏壓調變元件的臨界電壓,但同時也造成額外Bulk三閘極電晶體的元件變異。因此,在比較BULK以及SOI三閘極元件的變異度時,上述效應的影響應該要納入考量。
由於bulk三閘極元件中PTS區域會引起額外的元件變異,因此利用基極電壓來調變SOI三閘極元件結構的臨界電壓似乎是個較佳的選項。為了有利於SOI三閘極元件多重臨界電壓的設計,我們準確地推導了具有高度深埋氧化層(BOX)厚度微縮性的次臨界解析模型。利用此模型,我們可以有效率且廣泛地探討SOI三閘極元件參數對於多重臨界電壓調變的影響。基於相同次臨界斜率(Subthreshold Slope)的比較基準之下,我們的研究指出低高寬比及薄深埋氧化層(BOX)的三閘極SOI元件結構設計可較有效率地利用基極偏壓來調變臨界電壓。
This thesis investigates the feasibility of threshold voltage (Vth) modulation through substrate bias for tri-gate MOSFETs. Through 3-D atomistic simulation, the random dopant fluctuations in the Punch-Through-Stopper (PTS) region of Bulk tri-gate devices are examined. Our study indicates that to achieve an efficient threshold-voltage modulation through substrate bias, the high-doping PTS region may introduce excess variation in Bulk tri-gate devices. This effect has to be considered when one-to-one comparisons between Bulk tri-gate and SOI tri-gate regarding device variability are made.
Because of the PTS-induced variability in Bulk tri-gate, SOI tri-gate with substrate bias seems to be a better device structure to achieve multiple Vth. In order to facilitate multi-Vth device design in tri-gate SOI MOSFETs, we have derived an analytical subthreshold model with an accurate BOX-thickness scalability. Using this model, we can efficiently investigate multi-Vth device design in tri-gate SOI MOSFETs with wide range of design space. Under constant subthreshold swing criterion, our study indicates that tri-gate SOI device with low aspect ratio (AR) and thin BOX is a promising structure to enable efficient Vth modulation by substrate bias.
Abstract (Chinese) I
Abstract (English) II
Acknowledgement III
Contents IV
Figure Captions VI
Table Captions IX
Chapter1 Introduction 1
Chapter 2 Body effect induced variability in Bulk Tri-gate MOSFETs 4
2.1 Introduction 4
2.2 Device Design and Simulation Methodology 5
2.3 Results and Discussion 6
2.3.1 Threshold Voltage Variability 6
2.3.2 Subthreshold Swing Variability 7
2.4 Summary 10
Chapter3 Analytical Subthreshold Model for Tri-Gate SOI MOSFETs
with Thin Buried Oxide 22
3.1 Introduction 22
3.2 Subthreshold Model for Tri-gate SOI MOSFETs with Thin BOX 23
3.2.1 Poisson’s Equation and boundary conditions 23
3.2.2 Power Series Solution to Boundary Value Problems 25
3.3 Model Verification 31
3.4 Summary 33
Chapter4 Theoretical Investigation of Multiple-Threshold Device Design for Tri-Gate MOSFETs with Thin BOX 42
4.1 Introduction 42
4.2 Multi-Vth by Substrate Bias 43
4.3 Multi-Vth by Channel Doping 44
4.4 Summary 46
Chapter5 Conclusions and Future Work 58
References 60
[1] E. Karl, Y. Wang, Y.-G. Ng, Z. Guo, F. Hamzaoglu, U. Bhattacharya, K. Zhang, K. Mistry, and M. Bohr, “A 4.6 GHz 162 Mb SRAM Design in 22 nm tri-gate CMOS technology with integrated active VMIN-enhancing assist circuitry,” in Proc. ISSCC, 2012, pp. 230–232.

[2] Y.-W. Li, C. Ornelas, H.-S. Kim, H. Lakdawala, A. Ravi, K. Soumyanath, “A Reconfigurable Distributed All-Digital Clock Generator Core with SSC and Skew Correction in 22nm High-k Tri-Gate LP CMOS,” in Proc. ISSCC, 2012, pp. 70–72.

[3] N. August, H.-J. Lee, M. Vandepas, R. Parker, “A TDC-Less ADPLL With 200-to-3200MHz Range and 3mW Power Dissipation for Mobile SoC Clocking in 22nm CMOS,” in Proc. ISSCC, 2012, pp. 246–248.

[4] S. Damaraju, V. George, S. Jahagirdar, T. Khondker,R. Milstrey, S. Sarkar, S. Siers, I. Stolero , A. Subbiah, “A 22nm IA Multi-CPU and GPU System-on-Chip,” in Proc. ISSCC, 2012, pp. 56–57.

[5] E. Baravelli, M. Jurczak, N. Speciale, K. D. Meyer, and A. Dixit, “Impact of LER and random dopant fluctuations on FinFET matching performance,” in Proc. Ext. Abs. Silicon Nanoelectronics Workshop, Jun. 2007, pp. 23–24.

[6] T. Matsukawa, S. O’uchi, K. Endo, Y. Ishikawa, H. Yamauchi, Y. X. Liu, J. Tsukada, K. Sakamoto, and M. Masahara, “Comprehensive analysis of variability sources of FinFET characteristics,” in VLSI Symp. Tech. Dig.,2009, pp. 118–119.

[7] M.-L. Fan, Y.-S. Wu, V. P.-H. Hu, C.-Y. Hsieh, P. Su, and C.-T. Chuang, “Comparison of 4T and 6T FinFET SRAM cells for subthreshold operation considering variability—A model-based approach,” IEEE Trans. Electron Devices, vol. 58, no. 3, pp. 609–616, Mar. 2011.

[8] X. Wang, A. R. Brown, B. Cheng, and A. Asenov, “Statistical variability and reliability in nanoscale FinFETs,” in Proc. IEEE IEDM, 2011, pp. 5.4.1–5.4.4.

[9] M. Saitoh, K. Ota, C. Tanaka, Y. Nakabayashi, K. Uchida, and T. Numata, ”Unified Understanding of Vth and Id Variability in Tri-Gate Nanowire MOSFETs,” in VLSI Symp. Tech. Dig.,2011, pp. 132–133.

[10] E. Baravelli, A. Dixit, R. Rooyackers, M. Jurczak, N. Speciale, and K. De Meyer, “Impact of line-edge-roughness on FinFET matching performance,” IEEE Trans. Electron Devices, vol. 54, no. 9, pp. 2466–2474,Sep. 2007.

[11] A. Dixit, K. G. Anil, E. Baravelli, P. Roussel, A. Mercha, C. Gustin, M. Bamal, E. Grossar, R. Rooyackers, E. Augendre, M. Jurczak, S. Biesemans, and K. D. Meyer, “Impact of stochastic mismatch on measured SRAM performance of FinFETs with resist/spacer-defined fins: Role of line-edge-roughness,” in IEDM Tech. Dig., 2006, pp. 709–712.

[12] C. Shin, A. Carlson, X. Sun, K. Jeon, and T.-J. King Liu, “Tri-gate bulk MOSFET design for improved robustness to random dopant fluctuations,” in Proc. Silicon Nanoelectronics Workshop, 2008, pp. 1-2.

[13] S. Mutoh et al., “1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS,” IEEE J. Solid-State Circuits, vol.30, pp. 847–854, Aug. 1995.

[14] J. T. Kao and A. P. Chandrakasan, “Dual threshold voltage techniques for low-power digital circuits,” IEEE J. Solid-State Circuits, vol. 35, pp.1009–1018, July 2000.

[15] J. Frei, C. Johns, A. Vazquez, W. Xiong, C. Rinn Cleavelin, T. Schulz, N. Chaudhary, G.l Gebara,J.-R. Zaman, M. Gostkowski, K. Matthews, and J.-P. Colinge, ”Body Effect in Tri- and Pi-Gate SOI MOSFETs, ” IEEE Electron Device Lett., vol. 25, no. 12, pp. 813-815, Dec. 2004.

[16] T. Nagumo and T. Hiramoto, “Design Guideline of Tri-gate MOSFETs With Substrate-Bias Control,” IEEE Trans. Electron Devices, vol. 53, no. 12, pp. 3025-3031, Dec. 2006.

[17] C.-W. Oh, S.-D. Suk, Y.-K. Lee, S.-K. Sung, J.-D. Choe, S.-Y. Lee, D.-U. Choi, K.-H. Yeo, M.-S. Kim, S.-M. Kim, M. Li, S.-H. Kim, E.-J. Yoon, D.-W. Kim, D. Park, K. Kim, B.-I. Ryu, “Damascene gate FinFET SONOS memory implemented on bulk silicon wafer,” in IEDM Tech. Dig., 2004, pp. 893-896.

[18] M. Nawaz, S. Decker, L.-F. Giles, W. Molzer, T. Schulz, “Evaluation of process parameter space of bulk FinFETs using 3D TCAD,’’ in Microelectronic Engineering., 2008, pp.1529-1539.

[19] C.-R. Manoj, M. Nagpal, D. Varghese, and V.-R. Rao, “Device Design and Optimization Considerations for Bulk FinFETs,” IEEE Trans. Electron Devices, vol. 55, no. 2, pp. 609-615, Feb. 2008.

[20] K. Takahashi, T. Ohtou, A.-T. Putra, K. Shimizu, and T. Hiramoto, ”Body Factor and Leakage Current Reduction in Bulk FinFETs,” in Proc. Silicon Nanoelectronics Workshop, 2007, pp. 95-96.

[21] C.-H. Chiang, M.-L. Fan, J. J.-Y. Kuo, and P. Su, "Body Effect Induced Variability in Bulk Tri-gate MOSFETs," in IEEE VLSI-TSA International Symposium, Apr. 2012.

[22] Y.-S. Wu and P. Su, ” Sensitivity of Multi-Gate MOSFETs to Process Variations - An Assessment based on Analytical Solutions of 3-D Poisson’s Equation,” IEEE Trans. Nanotechnol., vol. 7, no. 3, pp. 299-304, May 2008.

[23] ISE TCAD Release 10.0 manual.

[24] M. Saitoh, K. Ota, C. Tanaka, K. Uchida1, and T. Numata, “10nm-Diameter Tri-Gate Silicon Nanowire MOSFETs with Enhanced High-Field Transport and Vth Tunability through Thin BOX,” in VLSI Symp. Tech. Dig., 2012, pp. 11-12.

[25] K. Okano, T. Izumida, H. Kawasaki, A. Kaneko, A. Yagishita, T. Kanemura, M. Kondo, S. Ito, N. Aoki, K. Miyano, T. Ono, K. Yahashi, K. Iwade, T. Kubota, T. Matsushita, I. Mizushima, S. Inaba, K. Ishimaru, K. Suguro, K. Eguchi, Y. Tsunashima, H. Ishiuchi, “Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length,” in IEDM Tech. Dig., 2005, pp. 721-724.

[26] J.-W. Han, C.-H. Lee, D. Park, and Y.-K. Choi, “Body Effects in Tri-Gate Bulk FinFETs for DTMOS,” in Nanotechnology Materials and Devices Conference, vol. 1, 2006, pp.208-209.

[27] K. Takahashi, A.-T. Putra, K. Shimizu and T. Hiramoto, “FinFETs with Both Large Body Factor and High Drive-Current,” in International Semiconductor Device Research Symp., 2007, pp.12-14.

[28] ATLAS User’s Manual, SILVACO, Santa Clara, CA, 2008.

[29] C.-H. Lin, R. Kambhampati, R. J. Miller, T. B. Hook, A. Bryant, W. Haensch, P. Oldiges, I. Lauer, T. Yamashita,V. Basker, T. Standaert, K. Rim, E. Leobandung, H. Bu, M. Khare,”Channel Doping Impact on FinFETs for 22nm and Beyond” in VLSI Symp. Tech. Dig., 2012, pp. 15-16.

[30] K. Akarvardar1, C. D. Young, D. Veksler, K.-W. Ang, I. Ok, M. Rodgers, V. Kaushik, S. Novak, J. Nadeau, M. Baykan, H. Madan,P. Y. Hung, T. Ngai, H. Stamper, S. Bennett, D. Franca, M. Rao, S. Gausepohl, P. Majhi, C. Hobbs, P. Kirsch, R. Jammy, “Performance and Variability in Multi-VT FinFETs Using Fin Doping”, in IEEE VLSI-TSA International Symposium, Apr. 2012.

[31] J. Kavalieros, B. Doyle, S. Datta, G. Dewey, M. Doczy, B. Jin,D. Lionberger, M. Metz, W. Rachmady, M. Radosavljevic, U. Shah,N. Zelick, and R. Chau, “Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering,” in VLSI Symp. Tech. Dig.,2006, pp. 62–63.

[32] Y.-K. Choi, L. Chang, P. Ranade, J.-S. Lee, D. Ha, S. Balasubramanian, A. Agarwal, M. Ameen, T.-J. King, and J. Bokor, “FinFET process re-finements for improved mobility and gate work function engineering,” in IEDM Tech. Dig., 2002, pp. 259–262.

[33] H. F. Dadgour, K. Endo, V. De, and K. Banerjee, “Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for SRAM reliability,” in IEDM Tech. Dig., 2008, pp. 29.6.1–29.6.4.

[34] H. F. Dadgour, V. De, and K. Banerjee, “Statistical modeling of metal gate work-function variability in emerging device technologies and implications for circuit design,” in Proc. ICCAD, 2008, pp. 270–277.

[35] H. F. Dadgour, K. Endo, V. K. De, and K. Banerjee, “Grain-orientation induced work function variation in nanoscale metal-gate transistors—Part II: Implications for process, device, and circuit design,” IEEE Trans.Electron Devices, vol. 57, no. 10, pp. 2515–2526, Oct. 2010.

[36] A. R. Brown, N. M. Iris, J. R. Watling, and A. Asenov, “Impact of metal gate granularity on threshold voltage variability: A full-scale three-dimensional statistical simulation study,” IEEE Electron Device Lett., vol. 31, no. 11, pp. 1199–1201, Mar. 2010.

[37] T. Matsukawa, Y. Liu, S. O’uchi, K. Endo, J. Tsukada, H. Yamauchi, Y. Ishikawa, H. Ota, S. Migita, Y. Morita, W. Mizubayashi, K. Sakamoto, and M. Masahara, “Comprehensive analysis of Ion variation in metal gate FinFETs for 20 nm and beyond,” in Proc. IEEE IEDM, 2011, pp. 23.5.1–23.5.4.

[38] H.-S. Wong and Y. Taur, ” Three-Dimensional “Atomistic” Simulation of Discrete Random Dopant Distribution Effects in Sub-O.1pm MOSFET’s, ” in IEDM Tech. Dig., Dec. 1993, pp. 705-708.

[39] X. Sun, Q. Lu, V. Moroz, H. Takeuchi, G. Gebara, J. Wetzel, S. Ikeda, C. Shin, and T.-J. King Liu, “Tri-Gate Bulk MOSFET Design for CMOS Scaling to the End of the Roadmap,” IEEE Trans. Electron Devices, vol. 29, no. 5, pp. 491-493, May. 2008.

[40] P. Magnone, F. Crupi, A. Mercha, P. Andricciola, H. Tuinhout, and Robert J. P. Lander, ”FinFET Mismatch in Subthreshold Region: Theory and Experiments,” IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 2848-2856, Nov. 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
1. 藉由沃爾洛伊圖研究與比較鰭狀電晶體和超薄絕緣矽電晶體的功函數變異
2. 先進CMOS元件結構的解析模型建立-量子侷限效應及製程變異敏感度之探討
3. 鰭狀、穿隧場效電晶體和異質通道三維積體超薄層元件於超低功耗靜態隨機存取記憶體和邏輯電路之設計與分析
4. 穿隧式場效電晶體與鰭式場效電晶體的隨機變異特性 於類比特性指標之比較及探討
5. 藉由三維沃爾洛伊圖對於隨機晶格邊界在可堆疊NAND記憶體造成的變異特性之模擬與分析
6. 鍺通道超薄絕緣層負電容金氧半場效電晶體之設計空間及負電容鰭狀電晶體之鰭邊緣粗糙引發之變異度分析
7. 負電容超薄絕緣場效電晶體的模擬與探討
8. 全包覆式閘極三五族穿隧式電晶體的直徑最佳化及短通道效應之理論探討
9. 高遷移率通道三閘極電晶體 之靜電完整性的理論研究
10. Spacer之設計對多重閘極絕緣砷化銦鎵金氧半鰭狀式場效電晶體的靜電完整性及效能的影響
11. 單晶三維積體之銦鎵砷/鍺超薄電晶體邏輯電路與靜態隨機存取記憶體考慮層間電耦合之分析
12. 量子電容對於三五族多閘極金氧半場效電晶體本質反轉層電容之影響
13. 薄膜太陽能電池的光捕捉最佳化之模擬研究
14. 三五族碎能隙異質接面穿隧式場效電晶體之隨機變易特性的模擬與探討
15. 鰭狀式場效電晶體之特性分析及堆疊式環狀閘極場效電晶體於邏輯電路應用中最佳堆疊層數之探討