|
Reference [1] D. Buss, B. Evans, J. Belly, W. Krenik, B. Haroun, D. Leipold, K. Maggio, J. Yang, and T. Moise, “SOC CMOS technology for personal internet products,” IEEE Trans. Elctron Devices, vol. 50, no. 3, pp. 546-556, Mar. 2003. [2] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 173-183, Jan. 1999. [3] C. Richier, P. Salome, G. Mabboux, I. Zaza, A. Juge, and P. Mortini, “Investigation on different ESD protection strategies devoted to 3.3 V RF applications (2 GHz) in a 0.18 μm CMOS process,” J. Electrostatics, vol. 54, no. 1, pp. 55-71, Jan. 2002. [4] S. Hyvonen, S. Joshi, and E. Rosenbaum, “Comprehensive ESD protection for RF inputs,” in Proc. EOS/ESD Symp., 2003, pp. 188-194. [5] B. Huang, C. Wang, C. Chen, M. Lei, P. Huang, K. Lin, and H. Wang, “Design and analysis for a 60-GHz low-noise amplifier with RF ESD protection,” IEEE Trans. Microwave Theory and Techniques, vol. 57, no. 2, pp. 298-305, Feb. 2009. [6] M.-D. Ker, C.-I. Chou, and C.-M. Lee, “A novel LC-tank ESD protection design for gigahertz RF circuits,” in Radio Frequency Integr. Circuits Symp. Dig., 2003, pp. 115-118. [7] D. Linten, S. Thijs, M. Natarajan, P. Wambacq, W. Jeamsaksiri, J. Ramos, A. Mercha, S. Jenei, S. Donnay, and S. Decoutere, “A 5-GHz fully integrated ESD-protected low-noise amplifier in 90-nm RF CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1434-1442, Jul. 2005. [8] M.-D. Ker and K.-C. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits,” IEEE Trans. Device Mater. Reliab., vol. 5, no. 2, pp. 235-249, Jun. 2005. [9] D. Pozar, Microwave Engineering, Wiley, 2005. [10] B. Razavi, RF Microelectronics, NJ: Prentice-Hall, 1998. [11] S. Cripps, RF Power Amplifiers for Wireless Communications, 2nd Ed., Artech, Boston, MA, 2006. [12] D. Shaeffer and T. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 1, pp. 745-759, 1997. [13] W. Soldner, M. Streibl, U. Hodel, M. Tiebout, H. Gossner, D. Schmitt-Landsiedel, J. Chun, C. Ito, and R. Dutton, “RF ESD protection strategies-Codesign vs. low-C protection,” Microelectron. Reliab., vol. 47, no. 7, pp. 1008-1015, Jul. 2007. [14] S. Voldman, ESD: RF Technology and Circuits. Hoboken, NJ: Wiley, 2006. [15] B.-S. Huang and M.-D. Ker, “New matching methodology of low-noise amplifier with ESD protection,” in Proc. IEEE Int. Symp. Circuits Syst., 2006, pp. 4891-4894. [16] M.-D. Ker and B.-J. Kuo, “Decreasing-size distributed ESD protection scheme for broadband RF circuits,” IEEE Trans. Microwave Theory and Techniques, vol. 53, no. 2, pp. 582-589, Feb. 2005. [17] H. Yen, T. Yeh, and S. Liu, “A physical de-embedding method for silicon-based device applications,” PIERS Online, vol. 5, no. 4, pp. 301-305, 2009. [18] C.-Y. Lin, L.-W. Chu, and M.-D. Ker, “Design and implementation of configurable ESD protection cell for 60-GHz RF circuits in a 65-nm CMOS process,” Microelectronics Reliability, vol. 51, no. 8, pp. 1315-1324, Aug. 2011. [19] T. Chen, K. Chan, and Y. Lin, “ESD protection circuit and method thereof,” US Patent 2007/0223157 A1, 2007. [20] S.-L. Jang, et al., “Temperature-dependence of steady-state characteristics of SCR-type ESD protection circuits,” Solid-State Electronics, vol. 44, no. 12, pp. 2139-2146, 2000. [21] T. Sowlati and D. Leenaerts, “A 2.4 GHz 0.18-?慆 CMOS self-biased cascode power amplifier,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1318-1324, Aug. 2003. [22] S. Hyvonen, S. Joshi, and E. Rosenbaum, “Combined TLP/RF testing system for detection of ESD failures in RF circuits,” IEEE Trans. Electron. Packag. Manufact., vol. 28, no. 3, pp. 224-230, Jul. 2005.
|