|
[1] D. W. Cline and P. R. Gray, “A power optimized 13-b 5 MSamples/s pipelined analog-to-digital converter in 1.2µm CMOS,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 294–303, Mar. 1996. [2] P. C. Yu and H.-S. Lee, “A 2.5-V, 12-b, 5-MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1854–1861, Dec. 1996. [3] S.-T. Ryu, B.-S. Song, and K. Bacrania, “A 10-bit 50-MS/s pipelined ADC with OpAmp current reuse,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 475–485, Mar. 2007. [4] A. E. Zadeh and L. P. Ang, “Double throughput analog to digital converter,” patent US 6 870 495 B1, Mar. 22, 2005. [5] B. Murmann and B. E. Boser, “A 12-Bit 75-MS/s Pipelined ADC Using Open-Loop Residue Amplification,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040–2050, Dec. 2003. [6] J. Crols and M. Steyaert, “Switched-opamp: An approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, no. 8, pp. 936–942, Aug. 1994. [7] M. Waltari and K. A. I. Halonen, “1-V 9-Bit pipelined switched-opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, pp. 129–134, Jan. 2001. [8] P. Y. Wu, V. S.-L. Cheung, and H. C. Luong, “A 1-V 100-MS/s 8-bit CMOS 9596 BIBLIOGRAPHY switched-opamp pipelined ADC using loading-free architecture,” IEEE J. Solid- State Circuits, vol. 42, no. 4, pp. 730–738, Apr. 2007. [9] Y.-J. Kim, H.-C. Choi, G.-C. Ahn, and S.-H. Lee, “A 12 bit 50 MS/s CMOS nyquist A/D converter with a fully differential class-AB switched Op-Amp,” IEEE J. Solid- State Circuits, vol. 45, no. 3, pp. 620–628, Mar. 2010. [10] J. McNeill, M. Coln, and B. Larivee, “A split-ADC architecture for deterministic digital background calibration of a 16b 1 MS/s ADC,” in IEEE Int. Solid-State Cir- cuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 276–277. [11] S.-H. Lee and B.-S. Song, “Digital-domain calibration of multistep analog-to-digital converters,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1679–1688, Dec. 1992. [12] A. N. Karanicolas, H.-S. Lee, and K. L. Bacrania, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp. 1207–1215, Dec. 1993. [13] E. Siragusa and I. Galton, “A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS pipelined ADC,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2126–2138, Dec. 2004. [14] C. R. Grace, P. J. Hurst, and S. H. Lewis, “A 12-bit 80-MSample/s pipelined ADC with bootstrapped digital calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1038–1046, May 2005. [15] J. McNeill, M. C. W. Coln, and B. J. Larivee, “”Split ADC” architecture for deter- ministic digital background calibration of a 16-bit 1-MS/s ADC,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2437–2445, Dec. 2005. [16] J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H.-S. Lee, “Comparator- based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid- State Circuits, vol. 41, no. 12, pp. 2658–2668, Dec. 2006. [17] L. Brooks and H.-S. Lee, “A zero-crossing-based 8-bit 200MS/s pipelined ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2677–2687, Dec. 2007.BIBLIOGRAPHY 97 [18] ——, “A 12b 50MS/s fully differential zero-crossing based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3329–3343, Dec. 2009. [19] B. Hershberg, S. Weaver, and U.-K. Moon, “Design of a split-CLS pipelined ADC with full signal swing using an accurate but fractional signal swing opamp,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2623–2633, Dec. 2010. [20] K. Nagaraj, T. R. Viswathan, K. Singhal, and J. Vlach, “Switched-capacitor circuits with reduced sensitivity to amplifier gain,” IEEE Trans. Circuits Syst., vol. CAS-34, no. 5, pp. 571–574, May 1987. [21] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: Autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584–1614, Nov. 1996. [22] J. Li and U.-K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time- shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1468–1476, Sep. 2004. [23] B. R. Gregoire and U.-K. Moon, “An over-60 dB true rail-to-rail performance using correlated level shifting and an opamp with only 30 dB loop gain,” IEEE J. Solid- State Circuits, vol. 43, no. 12, pp. 2620–2630, Dec. 2008. [24] P. J. Lim and B. A. Wooley, “A high-speed sample-and-hold technique using a miller hold capacitance,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 643–651, Apr. 1991. [25] C.-C. Hsu and J.-T. Wu, “A CMOS 33-mW 100-MHz 80-dB SFDR sample-and-hold amplifier,” Symp. VLSI Circuits Dig. Tech. Papers, pp. 263–266, 2003. [26] Z.-M. Lee, C.-Y. Wang, and J.-T. Wu, “A CMOS 15-bit 125-MS/s time-interleaved ADC with digital background calibration,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2149–2160, Oct. 2007.98 BIBLIOGRAPHY [27] D. Vecchi, J. Mulder, F. M. L. van der Goes, J. R. Westra, E. Ayranci, C. M. Ward, J. Wan, and K. Bult, “An 800 MS/s dual-rsidue pipeline ADC in 40 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2834–2844, Dec. 2011. [28] C. Mangelsdorf, H. Malik, S.-H. Lee, S. Hisano, and M. Martin, “A two-residue architecture for multistage ADCs,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1993, pp. 64–65. [29] B.-G. Lee and R. M. Tsang, “A 10-bit 50 MS/s pipelined ADC with capacitor- sharing and variable-gm opamp,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 883–890, Mar. 2009. [30] N. Sasidhar, Y.-J. Kook, S. Takeuchi, K. Hamashita, K. Takasuka, P. K. Hanumolu, and U.-K. Moon, “A low power pipelined ADC using capacitor and opamp sharing technique with a scheme to cancel the effect of signal dependent kickback,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2392–2401, Sep. 2009. [31] Y.-C. Huang and T.-C. Lee, “A 10b 100MS/s 4.5mW pipelined ADC with a time sharing technique,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 300–301. [32] J. Hu, N. Dolev, and B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC using dynamic source follower residue amplification,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1057–1066, Apr. 2009. [33] I. Ahmed, J. Mulder, and D. A. Johns, “A low-power capacitive charge pump based pipelined ADC,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1016–1027, May 2010. [34] S. H. Lewis, H. S. Fetterman, G. F. Gross, R. Ramachandran, and T. R. Viswanthan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, no. 3, pp. 351–358, Mar. 1992. [35] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to- digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599–606, May 1999.BIBLIOGRAPHY 99 [36] D. Johns and K. Martin, Analog Integrated Circuit Design. ISBN 0-471-14448-7: John Wiley & Sons, 1997. [37] W. M. C. Sansen, Analog Design Essentials. ISBN 0-387-25746-2: Springer, 2006. [38] D. Kurose, T. Ito, T. Ueno, T. Yamaji, and T. Itakura, “55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers,” IEEE J. Solid-State Circuits, vol. 41, no. 7, pp. 1589–1595, Jul. 2006. [39] S.-C. Lee, Y.-D. Jeon, K.-D. Kim, J.-K. Kwon, J. Kim, J.-W. Monn, and W. Lee, “A 10b 205MS/s 1mm 2 90nm CMOS pipelined ADC for flat-panel display appli- cations,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 458–459. [40] B. Hernes, J. Bjornsen, T. N. Andersen, A. Vinje, H. Korsvoll, F. Telsto, A. Briske- myr, C. Holdo, and O. Moldsvor, “A 92.5mW 205MS/s 10b pipeline IF ADC imple- mented in 1.2V/3.3V 0.13µm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 462–463. [41] K. Honda, M. Furuta, and S. Kawahito, “A low-power low-voltage 10-bit 100- MSample/s pipeline A/D converter using capacitance coupling techniques,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 757–765, Apr. 2007. [42] K.-W. Hsueh, Y.-K. Chou, Y.-H. Tu, Y.-F. Chen, Y.-L. Yang, and H.-S. Li, “A 1V 11b 200MS/s pipelined ADC with digital background calibration in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 546–547. [43] A. Verma and B. Razavi, “A 10-Bit 500-MS/s 55-mW CMOS ADC,” IEEE J. Solid- State Circuits, vol. 44, no. 11, pp. 3039–3050, Nov. 2009. [44] B. D. Sahoo and B. Razavi, “A 12-Bit 200-MHz CMOS ADC,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2366–2380, Sep. 2009. [45] P. Bogner, F. Kuttner, C. Kropf, T. Hartig, M. Burian, and H. Eul, “A 14b 100MS/s digitally self-calibrated pipelined ADC in 0.13µm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 832–833.100 BIBLIOGRAPHY [46] B.-G. Lee, B.-M. Min, G. Manganaro, and J. W. Valvano, “A 14b 100MS/s pipelined ADC with a merged active S/H and first MDAC,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 248–249. [47] H. V. de Vel, B. A. J. Buter, H. van der Ploeg, M. Vertregt, G. J. G. M. Geelen, and E. J. F. Paulus, “A 1.2-V 250-mW 14-b 100-MS/s digitally calibrated pipeline ADC in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1047–1056, Apr. 2009. [48] B.-S. Song, S.-H. Lee, and M. F. Tompsett, “A 10-b 15-MHz CMOS recycling two- step A/D converter,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1328–1338, Dec. 1990. [49] B. Razavi, Principles of Data Conversion System Design. ISBN 0-78-031093-4: New York: IEEE Press, 1995. [50] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail op- eration of switched opamp circuits,” IEE Electronics Letters, vol. 35, no. 1, pp. 8–10, Jan. 1999. [51] S. Ouzounov, R. van Veldhoven, C. Bastiaansen, K. Vongehr, R. van Wegberg, G. Geelen, L. Breems, and A. van Roermund, “A 1.2v 121-mode CT ΔΣ modu- lator for wireless receivers in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp. 242–243. [52] R. J. Apfel and P. R. Gray, “A fast-settling monolithic operational amplifier using doublet compression techniques,” IEEE J. Solid-State Circuits, vol. 9, no. 6, pp. 332–340, Dec. 1974. [53] B. Y. Kamath, R. G. Meyer, and P. R. Gray, “Relationship between frequency re- sponse and settling time of operational amplifiers,” IEEE J. Solid-State Circuits, vol. 9, no. 6, pp. 347–352, Dec. 1974. [54] I. Ahmed, J. Mulder, and D. A. Johns, “A 50MS/s 9.9mW pipelined ADC with 58dB SNDR in 0.18µm CMOS using capacitive charge-pumps,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 164–165.BIBLIOGRAPHY 101 [55] M. Furuta, M. Nozawa, and T. Itakura, “A 0.06mm 2 8.9b ENOB 40MS/s pipelined SAR ADC in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pa- pers, Feb. 2010, pp. 382–383. [56] W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.- K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13µm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 82–83. [57] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10b 50MS/s 820aW SAR ADC with on-chip digital calibration,” in IEEE Int. Solid-State Cir- cuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 384–386. [58] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu, and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error com- pensation,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 386–387.
|