跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/18 05:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翟芸
研究生(外文):Chai, Yun
論文名稱:低功率管線式類比數位轉換器
論文名稱(外文):Low-Power Pipelined Analog-to-Digital Converter
指導教授:吳介琮
指導教授(外文):Wu, Jieh-Tsorng
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:103
中文關鍵詞:類比數位轉換器雙路管線式
外文關鍵詞:ADCpipelineddual-path
相關次數:
  • 被引用被引用:0
  • 點閱點閱:435
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近來,隨著高速與高整合電路應用。
先進製程演變趨於更低通道長度與更薄閘極氧化層厚度的 MOS 電晶體製作,
致使電晶體本質增益降低且工作電壓也隨之下降。
類比數位轉換器也對應需與數位處理系統整合在同一顆晶片上 (SOC)。
可操作於低電源電壓且耗電量極小之類比數位轉換器,
即成現今高整合之混合式訊號裝置中最主要的探討課題。\\

管線式類比數位轉換器是目前混合訊號裝置中,主流的產品之一。大多應用在高速與高精確度
兼顧的領域,如移動式通訊系統中之無線區域網路(WLAN)、消費產品中的手機、高解析數位
電視、可攜式電腦等。本論文旨在發展一創新之架構,希望在兼顧高速與高解析度之需求下,
卻可大幅降低其功率消耗。此創新架構在系統與電路上皆有別傳統作法。\\

改良之管線式類比數位轉換器使用雙路架構利用兩路皆不甚精確電路,產生所需精準度之訊號
值。憑藉大量降低電路所需精確度,以達成低耗電與低電壓操作目的。
雙路放大技巧可使電路的功率消耗達到最佳化。
粗定義級 (coarse stage) 的放大器提供訊號所需的大振幅輸出;精確級 (fine stage)
的放大器則將用高精確度的規格,來處理粗定義級的輸出與理想值之間的小振幅誤差值
(residue)。時序交錯式電容也利用在MDAC運作中,用以延長可用之放大時間,減低功率消耗。
此外,本論文亦使用一雙路架構的放大器。
藉由前饋與電流比值方法,透過調整電路極零點位置,實現一個不需電容補償即可達高直流增
益之放大器。進而並行此種雙路放大器架構與切換式放大器的技巧,應用於前述之雙路管線式
類比數位轉換器電路中。藉由雙路管線式類比數位轉換器之特殊結構,可將此放大器設計在非
一般規格下,由此達到一更長足之低耗電值。\\

此電路系統使用65奈米CMOS標準製程技術設計。
電源電壓為 1~V,輸入訊號振幅達 1.3~$V_{pp}$,解析度10位元,最高取樣頻率200MS/s。
於Nyquist取樣頻率下,最大耗電量5.37mW。
With recent application on higher speed and higher integration capability of circuits;
the trend is that the channel length of MOS transistor is smaller and the thickness of gate
oxide also becomes thinner. Therefore, the intrinsic gain of MOS transistor is lower and
the operation voltage is also reduced. By the demand of integrating analog-to-digital con-
verter with digital signal-processing system on one chip (SOC), a low-power low-voltage
analog-to-digital converter is an important key factor in mixed signal system nowadays.
Pipelined analog-to-digital converter is one of the most popular products in mixed-
mode signal devices and instruments. Mainly applied in achieving high linearity and high
accuracy simultaneously, such as WLAN in mobile communication systems cell phone
HDTV portable computer and so on. A novel pipelined ADC structure is developed
in this thesis. This work demonstrates the power efficiency when achieving high speed
and high accuracy potential of pipelined ADC at the same time. This novel scheme is
iiidifferent from conventional works both in system and circuits.
The improved Pipelined analog-to-digital converter adopts a dual-path structure. It
utilizes two separated analog-to-digital converter paths with inaccurate specifications to
generate an equivalent high accurate signal value. By a large reducing of the accuracy
required in this novel structure will achieve a low-power and low-voltage implement what
we explore. The power is optimized by using dual path amplification technique. The
coarse amplifier covers large swing, and fine amplifier handles residue with high preci-
sion. Also, time-interleaving capacitor sets are utilized to increase amplification time of
MDAC operation for power reducing. Furthermore, a dual-path opamp circuit is also
used in this design. By utilizing the methods of feedforward and current-ratio to well
place the pole and zero can realize an opamp with high dc gain and eliminate the com-
pensation capacitor results in a low power design. Then, we employ this dual-path opamp
incorporating with switched opamp technique in the dual-path pipelined analog-to-digital
converter what we mentioned above. To make matters even more exciting, by the particu-
lar structure of dual-path pipelined analog-to-digital converter, we can design this opamp
under unusual specifications to attain to an attractive lower power value.
This complete circuit is designed with a 65nm CMOS technology. Power supply volt-
age is 1 V, input signal amplitude is 1.3 V pp , resolution is 10-bit, the maximum sampling
frequency is 200MS/s. At Nyquist rate, the maximum power consumption is 5.37mW.
Z‘Š i
English Abstract iii
Acknowledgements v
List of Tables xi
List of Figures xiii
1 Introduction 1
1.1 Green Energy-Saving Epoch . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Pipelined Analog-to-Digital Converter 7
2.1 Quantized-Feedforward (Subranging) Architecture . . . . . . . . . . . . 7
2.2 1.5-bit Pipelined Stage (Quantized-Feedforward Analog Processor) . . . 8
2.3 Multiplying Digital-to-Analog Converter (MDAC) . . . . . . . . . . . . 11
2.3.1 Interstage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Stage Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Linearity and Non-Linearity . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Non-Ideal Sub-Analog-to-Digital Converter . . . . . . . . . . . . 16
2.4.2 Non-Ideal Sub-Digital-to-Analog Conversion . . . . . . . . . . . 16
vii2.4.3 Non-Ideal Gain Stage . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3 MDAC Amplification Techniques 25
3.1 Prior Arts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Two-Stage Cascaded Amplification (CA) . . . . . . . . . . . . . 26
3.1.2 Correlated Double Sampling (CDS) . . . . . . . . . . . . . . . . 28
3.1.3 Correlated Level Shift (CLS) . . . . . . . . . . . . . . . . . . . . 32
3.2 Proposed Dual-Path Amplification . . . . . . . . . . . . . . . . . . . . . 37
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Dual-Path Pipelined ADC 47
4.1 Dual-Path Pipeline Stage . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Dual-Path Relaying Amplification . . . . . . . . . . . . . . . . . . . . . 54
4.3 Dual-Path Pipelined ADC . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Capacitor Mismatching and Opamp Offset . . . . . . . . . . . . . . . . . 64
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5 A 10-Bit 200 MS/s 5.37 m W Dual-Path Pipelined ADC 69
5.1 Input Sampling Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.1 Sampling Network . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Bootstrap Switch . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Matching of Sampling Network . . . . . . . . . . . . . . . . . . 71
5.2 Opamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Coarse-Stage Opamp . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Fine-Stage Opamp . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Digital Error Correction Circuit . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
viii6 Conclusions and Future Works 91
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Recommendations for Future Investigation . . . . . . . . . . . . . . . . . 91
Bibliography 93
Vita 101
Publication List 103
[1] D. W. Cline and P. R. Gray, “A power optimized 13-b 5 MSamples/s pipelined
analog-to-digital converter in 1.2µm CMOS,” IEEE J. Solid-State Circuits, vol. 31,
no. 3, pp. 294–303, Mar. 1996.
[2] P. C. Yu and H.-S. Lee, “A 2.5-V, 12-b, 5-MSample/s pipelined CMOS ADC,” IEEE
J. Solid-State Circuits, vol. 31, no. 12, pp. 1854–1861, Dec. 1996.
[3] S.-T. Ryu, B.-S. Song, and K. Bacrania, “A 10-bit 50-MS/s pipelined ADC with
OpAmp current reuse,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 475–485,
Mar. 2007.
[4] A. E. Zadeh and L. P. Ang, “Double throughput analog to digital converter,” patent
US 6 870 495 B1, Mar. 22, 2005.
[5] B. Murmann and B. E. Boser, “A 12-Bit 75-MS/s Pipelined ADC Using Open-Loop
Residue Amplification,” IEEE J. Solid-State Circuits, vol. 38, no. 12, pp. 2040–2050,
Dec. 2003.
[6] J. Crols and M. Steyaert, “Switched-opamp: An approach to realize full CMOS
switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State
Circuits, vol. 29, no. 8, pp. 936–942, Aug. 1994.
[7] M. Waltari and K. A. I. Halonen, “1-V 9-Bit pipelined switched-opamp ADC,” IEEE
J. Solid-State Circuits, vol. 36, no. 1, pp. 129–134, Jan. 2001.
[8] P. Y. Wu, V. S.-L. Cheung, and H. C. Luong, “A 1-V 100-MS/s 8-bit CMOS
9596 BIBLIOGRAPHY
switched-opamp pipelined ADC using loading-free architecture,” IEEE J. Solid-
State Circuits, vol. 42, no. 4, pp. 730–738, Apr. 2007.
[9] Y.-J. Kim, H.-C. Choi, G.-C. Ahn, and S.-H. Lee, “A 12 bit 50 MS/s CMOS nyquist
A/D converter with a fully differential class-AB switched Op-Amp,” IEEE J. Solid-
State Circuits, vol. 45, no. 3, pp. 620–628, Mar. 2010.
[10] J. McNeill, M. Coln, and B. Larivee, “A split-ADC architecture for deterministic
digital background calibration of a 16b 1 MS/s ADC,” in IEEE Int. Solid-State Cir-
cuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 276–277.
[11] S.-H. Lee and B.-S. Song, “Digital-domain calibration of multistep analog-to-digital
converters,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1679–1688, Dec. 1992.
[12] A. N. Karanicolas, H.-S. Lee, and K. L. Bacrania, “A 15-b 1-Msample/s digitally
self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, no. 12, pp.
1207–1215, Dec. 1993.
[13] E. Siragusa and I. Galton, “A digitally enhanced 1.8-V 15-bit 40-MSample/s CMOS
pipelined ADC,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2126–2138, Dec.
2004.
[14] C. R. Grace, P. J. Hurst, and S. H. Lewis, “A 12-bit 80-MSample/s pipelined ADC
with bootstrapped digital calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 5,
pp. 1038–1046, May 2005.
[15] J. McNeill, M. C. W. Coln, and B. J. Larivee, “”Split ADC” architecture for deter-
ministic digital background calibration of a 16-bit 1-MS/s ADC,” IEEE J. Solid-State
Circuits, vol. 40, no. 12, pp. 2437–2445, Dec. 2005.
[16] J. K. Fiorenza, T. Sepke, P. Holloway, C. G. Sodini, and H.-S. Lee, “Comparator-
based switched-capacitor circuits for scaled CMOS technologies,” IEEE J. Solid-
State Circuits, vol. 41, no. 12, pp. 2658–2668, Dec. 2006.
[17] L. Brooks and H.-S. Lee, “A zero-crossing-based 8-bit 200MS/s pipelined ADC,”
IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2677–2687, Dec. 2007.BIBLIOGRAPHY 97
[18] ——, “A 12b 50MS/s fully differential zero-crossing based pipelined ADC,” IEEE
J. Solid-State Circuits, vol. 44, no. 12, pp. 3329–3343, Dec. 2009.
[19] B. Hershberg, S. Weaver, and U.-K. Moon, “Design of a split-CLS pipelined ADC
with full signal swing using an accurate but fractional signal swing opamp,” IEEE J.
Solid-State Circuits, vol. 45, no. 12, pp. 2623–2633, Dec. 2010.
[20] K. Nagaraj, T. R. Viswathan, K. Singhal, and J. Vlach, “Switched-capacitor circuits
with reduced sensitivity to amplifier gain,” IEEE Trans. Circuits Syst., vol. CAS-34,
no. 5, pp. 571–574, May 1987.
[21] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp
imperfections: Autozeroing, correlated double sampling, and chopper stabilization,”
Proc. IEEE, vol. 84, no. 11, pp. 1584–1614, Nov. 1996.
[22] J. Li and U.-K. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-
shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1468–1476,
Sep. 2004.
[23] B. R. Gregoire and U.-K. Moon, “An over-60 dB true rail-to-rail performance using
correlated level shifting and an opamp with only 30 dB loop gain,” IEEE J. Solid-
State Circuits, vol. 43, no. 12, pp. 2620–2630, Dec. 2008.
[24] P. J. Lim and B. A. Wooley, “A high-speed sample-and-hold technique using a miller
hold capacitance,” IEEE J. Solid-State Circuits, vol. 26, no. 4, pp. 643–651, Apr.
1991.
[25] C.-C. Hsu and J.-T. Wu, “A CMOS 33-mW 100-MHz 80-dB SFDR sample-and-hold
amplifier,” Symp. VLSI Circuits Dig. Tech. Papers, pp. 263–266, 2003.
[26] Z.-M. Lee, C.-Y. Wang, and J.-T. Wu, “A CMOS 15-bit 125-MS/s time-interleaved
ADC with digital background calibration,” IEEE J. Solid-State Circuits, vol. 42,
no. 10, pp. 2149–2160, Oct. 2007.98 BIBLIOGRAPHY
[27] D. Vecchi, J. Mulder, F. M. L. van der Goes, J. R. Westra, E. Ayranci, C. M. Ward,
J. Wan, and K. Bult, “An 800 MS/s dual-rsidue pipeline ADC in 40 nm CMOS,”
IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2834–2844, Dec. 2011.
[28] C. Mangelsdorf, H. Malik, S.-H. Lee, S. Hisano, and M. Martin, “A two-residue
architecture for multistage ADCs,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, Feb. 1993, pp. 64–65.
[29] B.-G. Lee and R. M. Tsang, “A 10-bit 50 MS/s pipelined ADC with capacitor-
sharing and variable-gm opamp,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp.
883–890, Mar. 2009.
[30] N. Sasidhar, Y.-J. Kook, S. Takeuchi, K. Hamashita, K. Takasuka, P. K. Hanumolu,
and U.-K. Moon, “A low power pipelined ADC using capacitor and opamp sharing
technique with a scheme to cancel the effect of signal dependent kickback,” IEEE J.
Solid-State Circuits, vol. 44, no. 9, pp. 2392–2401, Sep. 2009.
[31] Y.-C. Huang and T.-C. Lee, “A 10b 100MS/s 4.5mW pipelined ADC with a time
sharing technique,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb.
2010, pp. 300–301.
[32] J. Hu, N. Dolev, and B. Murmann, “A 9.4-bit, 50-MS/s, 1.44-mW pipelined ADC
using dynamic source follower residue amplification,” IEEE J. Solid-State Circuits,
vol. 44, no. 4, pp. 1057–1066, Apr. 2009.
[33] I. Ahmed, J. Mulder, and D. A. Johns, “A low-power capacitive charge pump based
pipelined ADC,” IEEE J. Solid-State Circuits, vol. 45, no. 5, pp. 1016–1027, May
2010.
[34] S. H. Lewis, H. S. Fetterman, G. F. Gross, R. Ramachandran, and T. R. Viswanthan,
“A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits,
vol. 27, no. 3, pp. 351–358, Mar. 1992.
[35] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS pipeline analog-to-
digital converter,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 599–606, May
1999.BIBLIOGRAPHY 99
[36] D. Johns and K. Martin, Analog Integrated Circuit Design. ISBN 0-471-14448-7:
John Wiley & Sons, 1997.
[37] W. M. C. Sansen, Analog Design Essentials. ISBN 0-387-25746-2: Springer, 2006.
[38] D. Kurose, T. Ito, T. Ueno, T. Yamaji, and T. Itakura, “55-mW 200-MSPS 10-bit
pipeline ADCs for wireless receivers,” IEEE J. Solid-State Circuits, vol. 41, no. 7,
pp. 1589–1595, Jul. 2006.
[39] S.-C. Lee, Y.-D. Jeon, K.-D. Kim, J.-K. Kwon, J. Kim, J.-W. Monn, and W. Lee,
“A 10b 205MS/s 1mm 2 90nm CMOS pipelined ADC for flat-panel display appli-
cations,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2007, pp.
458–459.
[40] B. Hernes, J. Bjornsen, T. N. Andersen, A. Vinje, H. Korsvoll, F. Telsto, A. Briske-
myr, C. Holdo, and O. Moldsvor, “A 92.5mW 205MS/s 10b pipeline IF ADC imple-
mented in 1.2V/3.3V 0.13µm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig.
Tech. Papers, Feb. 2007, pp. 462–463.
[41] K. Honda, M. Furuta, and S. Kawahito, “A low-power low-voltage 10-bit 100-
MSample/s pipeline A/D converter using capacitance coupling techniques,” IEEE
J. Solid-State Circuits, vol. 42, no. 4, pp. 757–765, Apr. 2007.
[42] K.-W. Hsueh, Y.-K. Chou, Y.-H. Tu, Y.-F. Chen, Y.-L. Yang, and H.-S. Li, “A 1V
11b 200MS/s pipelined ADC with digital background calibration in 65nm CMOS,”
in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2008, pp. 546–547.
[43] A. Verma and B. Razavi, “A 10-Bit 500-MS/s 55-mW CMOS ADC,” IEEE J. Solid-
State Circuits, vol. 44, no. 11, pp. 3039–3050, Nov. 2009.
[44] B. D. Sahoo and B. Razavi, “A 12-Bit 200-MHz CMOS ADC,” IEEE J. Solid-State
Circuits, vol. 44, no. 9, pp. 2366–2380, Sep. 2009.
[45] P. Bogner, F. Kuttner, C. Kropf, T. Hartig, M. Burian, and H. Eul, “A 14b 100MS/s
digitally self-calibrated pipelined ADC in 0.13µm CMOS,” in IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, Feb. 2006, pp. 832–833.100 BIBLIOGRAPHY
[46] B.-G. Lee, B.-M. Min, G. Manganaro, and J. W. Valvano, “A 14b 100MS/s pipelined
ADC with a merged active S/H and first MDAC,” in IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers, Feb. 2008, pp. 248–249.
[47] H. V. de Vel, B. A. J. Buter, H. van der Ploeg, M. Vertregt, G. J. G. M. Geelen, and
E. J. F. Paulus, “A 1.2-V 250-mW 14-b 100-MS/s digitally calibrated pipeline ADC
in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1047–1056, Apr.
2009.
[48] B.-S. Song, S.-H. Lee, and M. F. Tompsett, “A 10-b 15-MHz CMOS recycling two-
step A/D converter,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1328–1338,
Dec. 1990.
[49] B. Razavi, Principles of Data Conversion System Design. ISBN 0-78-031093-4:
New York: IEEE Press, 1995.
[50] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail op-
eration of switched opamp circuits,” IEE Electronics Letters, vol. 35, no. 1, pp. 8–10,
Jan. 1999.
[51] S. Ouzounov, R. van Veldhoven, C. Bastiaansen, K. Vongehr, R. van Wegberg,
G. Geelen, L. Breems, and A. van Roermund, “A 1.2v 121-mode CT ΔΣ modu-
lator for wireless receivers in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers, Feb. 2007, pp. 242–243.
[52] R. J. Apfel and P. R. Gray, “A fast-settling monolithic operational amplifier using
doublet compression techniques,” IEEE J. Solid-State Circuits, vol. 9, no. 6, pp.
332–340, Dec. 1974.
[53] B. Y. Kamath, R. G. Meyer, and P. R. Gray, “Relationship between frequency re-
sponse and settling time of operational amplifiers,” IEEE J. Solid-State Circuits,
vol. 9, no. 6, pp. 347–352, Dec. 1974.
[54] I. Ahmed, J. Mulder, and D. A. Johns, “A 50MS/s 9.9mW pipelined ADC with 58dB
SNDR in 0.18µm CMOS using capacitive charge-pumps,” in IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, Feb. 2009, pp. 164–165.BIBLIOGRAPHY 101
[55] M. Furuta, M. Nozawa, and T. Itakura, “A 0.06mm
2 8.9b ENOB 40MS/s pipelined
SAR ADC in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Pa-
pers, Feb. 2010, pp. 382–383.
[56] W. Liu, Y. Chang, S.-K. Hsien, B.-W. Chen, Y.-P. Lee, W.-T. Chen, T.-Y. Yang, G.-
K. Ma, and Y. Chiu, “A 600MS/s 30mW 0.13µm CMOS ADC array achieving over
60dB SFDR with adaptive digital equalization,” in IEEE Int. Solid-State Circuits
Conf. Dig. Tech. Papers, Feb. 2009, pp. 82–83.
[57] M. Yoshioka, K. Ishikawa, T. Takayama, and S. Tsukamoto, “A 10b 50MS/s
820aW SAR ADC with on-chip digital calibration,” in IEEE Int. Solid-State Cir-
cuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 384–386.
[58] C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, C.-M. Huang, C.-H. Huang, L. Bu,
and C.-C. Tsai, “A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error com-
pensation,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp.
386–387.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊