跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/10 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴志偉
研究生(外文):Lai, Chih-Wei
論文名稱:應用於無線醫療遙測之互補式金氧半射頻傳送機前端電路研製
論文名稱(外文):Design and Implementation of CMOS RF Transmitter Front-End Circuits for Wireless Medical Telemetry Applications
指導教授:吳重雨
指導教授(外文):Wu, Chung-Yu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:72
中文關鍵詞:無線醫療遙測互補式金氧半多赫蒂放大器IQ調變器四相位壓控震盪器傳送機
外文關鍵詞:Wireless Medical TelemetryCMOSDoherty amplifierIQ modulatorQVCOtransmitter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
近年醫療電子的快速發展改善了醫療看護的品質。在生理監控的應用上,已經漸漸趨向透過無線方式來傳輸以帶來較佳的舒適性與自由性。一個小面積、高效能並操作在醫用頻段的射頻傳送機需求與日俱增。西元兩千零二年美國聯邦通信委員會(FCC)為了解決無線醫療儀器干擾問題而訂出了一個無線醫療遙測服務 (Wireless Medical Telemetry Service)頻段,然而至今一直未有操作在此頻段的傳輸機前端電路被發表。
本篇論文提出一個應用於無線醫療遙測頻段1.4-GHz的傳送機前端電路,此傳送機整合了功率放大器(Power Amplifier)、正交調變器(IQ Modulator)、四相位壓控振盪器(Quadrature Voltage-Controlled Oscillator)並且使用0.18-μm CMOS技術來設計與製造。論文中提出一個功率放大器採用多赫蒂放大器(Doherty Amplifier)架構,模擬顯示放大器的功率附加效益(Power Added Efficiency)在1-dB壓縮點時有29%,而回退(Back-off) 6 dB操作仍然有15%。而正交調變器與四相位壓控振盪器分別以2.45 mW、2.26 mW之低功耗達到直接升頻的目的。量測結果顯示傳輸機可輸出功率5 dBm,整體轉換增益為20 dB,此時整體消耗功率為35 mW,整體效能可達9.04%。在1-dB壓縮點的鏡像抑制及震盪源抑制皆為20 dBc。晶片的操作電壓為1.5 V,晶片面積為2.06 mm2。
最後本論文會探討此傳送機振盪源抑制及鏡像抑制不佳的原因,並將前一個設計改成差動式架構以解決問題。新版的差動式多赫蒂放大器的功率附加效益在1-dB壓縮點時有25%,而回退(Back-off) 6 dB操作仍然有13%。重新設計後的傳送機可輸出功率8 dBm,並且有20 dB的轉換增益,此時整體消耗功率為62 mW,整體效能為10.1%。在1-dB壓縮點的鏡像抑制與震盪源抑制分別為52 dBc及51 dBc。晶片的操作電壓為1.5 V,晶片面積為2.59 mm2。第二版電路已委託國家晶片中心於台灣積體電路股份有限公司以0.18-μm CMOS技術製造。

In recent year, the rapid development of medical electronics improves the quality of medical care. For long-term bio-medical monitoring applications, using implantable or wearable wireless product makes patient more comfortable and mobile. For these applications, a low power, small area wireless transmitters are required. In June 2002, in order to solving interference problem, FCC allocated 14-MHz of radio spectrum to Wireless Medical Telemetry Services. However, no transmitter front-ends circuits using WMTS band has been published.
In this thesis, the design methodology and implementation of a 1.4-GHz RF transmitter front-end for WMTS band are presented. The proposed transmitter which consists of a power amplifier, an IQ modulator and a quadrature voltage-controlled oscillator is designed in 0.18-μm CMOS technology. The proposed power amplifier uses Doherty amplifier architecture. In simulation results, the power amplifier achieves power added efficiency (PAE) of 29% at P1dB and 15% at 6 dB back-off power level. IQ modulator and QVCO with low power consumption of 2.45 mW and 2.26 mW achieve function of up-conversion. In experimental results, it consumes 35 mW under 1.5-V power supply for 5 dBm output power. The efficiency is 9.04%. The conversion gain of whole TX is 20 dB. The image rejection is 20 dBc, and LO rejection is also 20 dBc. The die area is 2.06 mm2.
Finally, discussions about the reasons of degradations of LO rejection and image rejection are made. A modified differential transmitter is proposed. The modified differential Doherty PA achieves PAE of 25% at P1dB and 13% at 6 dB back-off power level. The re-designed TX achieves P1dB of 8 dBm. The conversion gain is 20 dB. The power dissipation is 62 mW under 1.5V power supply, and the efficiency is 10.1%. The image rejection and LO rejection are 52 dBc and 51 dBc, respectively. The die area is 2.59 mm2. The re-designed TX will be implemented in TSMC 0.18-μm CMOS technology.

ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) iii
ACKNOWLEDGEMENTS v
CONTENTS vi
FIGURE CAPTIONS vii
TABLE CAPTIONS x
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Review on CMOS RF Transmitter Front-End ICs 4
1.3 Motivation 8
1.4 Main Results and Thesis Organization 9
CHAPTER 2 DESIGN OF CMOS RF TRANSMITTER FRONT-END CIRCUITS 12
2.1 Design Considerations 12
2.2 Circuit Designs 17
2.2.1 Doherty Power Amplifier 17
2.2.2 IQ Modulator and Differential to Single-Ended Circuit 35
2.2.3 Quadrature Voltage-Controlled Oscillator 39
CHAPTER 3 EXPERIMENTAL RESULTS 46
3.1 Chip Layout Descriptions 46
3.2 Measurement Setup 49
3.3 Experimental Results 52
3.4 Discussions 52
CHAPTER 4 CONCLUSIONS AND FUTURE WORK 68
4.1 Conclusions 68
4.2 Future Work 69
REFERENCES 70
[1] J. Y. Khan, M. R. Yuce, and F. Karami, “Performance evaluation of a wireless body area sensor network for remote patient monitoring,” in 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Aug. 2008, pp. 1266–1269.
[2] C.Evans-Pughe, “Bzzzz zzz [ZigBee Wireless Standard],” IEE Review, vol. 49, pp. 28-31, March 2003.
[3] S. Y. Shin, H. S. Park, and W. H. Kwon, “Mutual interference analysis of IEEE 802.15.4 and IEEE 802.11b,” Comput. Networks, vol. 51, no.12, pp. 3338–3353, 2007.
[4] DK. Cho, SH. Lee, A. Chang, T. Massey, CW. Chang, MH. Tsai, M. Sarrafzadeh and M. Gerla, “Opportunistic medical monitoring using Bluetooth P2P networks,” International Symposium on a World of Wireless, Mobile and Multimedia Networks, 2008.
[5] M. Bettayeb and S. F. A. Shah, “State-of-the-art ultra-wideband technology for communication systems: a review,” in Proc. 10th IEEE International Conference on Electronics, Circuits and Systems (ICECS'03), 2003.
[6] Federal Communications Commission, “Amendment of Parts 2 and 95 of the Commission’s Rules to Create a Wireless Medical Telemetry Service,” FCC Washington, D.C., Rep. FCC00-211, 2000.
[7] T.-W. Chen, J.-Y. Yu, C.-Y. Yu and C.-Y. Lee, “A 0.5 V 4.85 Mbps dual-mode baseband transceiver with extended frequency calibration for biotelemetry applications,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp.2966 -2976, 2009.
[8] K. Bumman, M. Junghwan and K. Ildu, “Efficiently amplified,” Microwave Magazine, IEEE, vol. 11, no. 5, pp.87 -100, 2010.
[9] W. H. Doherty, “New high efficiency power-amplifier for modulated waves,” Proc. IRE, vol. 24, pp.1163, 1936.
[10] N. Wongkomet, L. Tee and P. Gray, “A 1.7GHz 1.5W CMOS RF Doherty Power Amplifier for Wireless Communications,” in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 486-487.
[11] M. Elmala, J. Parmesh and K. Soumyanath, “A 90-nm CMOS Doherty power amplifier with minimum AM-PM distortion,” IEEE J. Solid-State Circuits, vol. 41, pp.1323, 2006.
[12] L.-Y. Yang, H.-S. Chen and Y.-J. E. Chen, “A 2.4 GHz fully integrated cascode-cascade CMOS Doherty power amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 18, pp.197, 2008.
[13] H. Solar, R. Berenguer, J. de No, I. Gurutzeaga, U. Alvarado, and J. Legarda “A fully integrated 23.2dBm P1dB CMOS power amplifier for the IEEE 802.11a with 29% PAE,” Elsevier Integration, vol. 42, no. 1, pp. 77–82, Jan. 2009.
[14] A. Afsahi, A. Behzad, and L. E. Larson, “A 65nm CMOS 2.4GHz 31.5dBm power amplifier with a distributed LC power-combining network and improved linearization for WLAN applications,” in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 452-453.
[15] I. Nam, K. Choi, J. Lee et al., “A 2.4GHz Low-Power Low-IF Receiver and Direct-Conversion Transmitter in 0.18-μm CMOS for IEEE 802.15.4 WPAN Applications,” IEEE Trans. Microwave Theory and Techniques, vol. 55,no. 4, pp. 682-689, Apr. 2007.
[16] W.-C. Wang, C.-P. Liao, Y.-K. Lo, Z.-D. Huang, F. R. Shahroury, and C.-Y. Wu, “The design of integrated 3-GHz to 11-GHz CMOS transmitter for full-band ultra-wideband (UWB) applications,” in IEEE International Symposium on Journal of Circuits and Systems, May 18-21, 2008, pp. 2709-2712.
[17] L.-H. Wang et al, “An IEEE 802.15.4 RF transmitter for 2.4 GHz ISM band healthcare applications,” International Symposium on Bioelectronics and Bioinformatics (ISBB), Nov 3-5, 2011, pp.57-60.
[18] S. Y. Lee, L. H. Wang and Y. H. Lin, “A CMOS Quadrature VCO with subharmonic and injection-locked techniques,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 11, pp.843 -847, 2010.
[19] IEEE Std 802.11-2012, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
[20] B. Razavi, “RF Microelectronic,” Prentice Hall, 1998.
[21] T. Sowlati and D. M. W. Leenaerts, “ A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier,” IEEE J. Solid-State Circuits, vol. 38, pp.1318, 2003.
[22] G. Gonzalez, “Microwave Transistor Amplifiers: Analysis and Design,” Prentice Hall, 1984.
[23] B. Gilbert, “A precise four-quadrant multiplier with subnanosecond response,” IEEE J. Solid-State Circuits, vol. 3, pp. 365 -373, 1968.
[24] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” Cambridge University Press, 2003.
[25] Y. Zhang, P. Liu, and D. Heo, “A Low-Phase-Noise LC QVCO with Bottom-Series Coupling and Capacitor Tapping,” IEEE International Symposium on Circuits and Systems, May 2008, pp. l000-1003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 互補式金氧半高頻前置接收器之電路設計與分析
2. K-Band低電壓互補式金氧半壓控震盪器與除頻器以應用於鎖相迴路之關鍵積體電路設計與分析
3. 應用於生醫訊號偵測的低功率低雜訊之互補式金氧半電流訊號前端放大器
4. 應用於下視網膜植入具光伏特電池及分區供電之180奈米互補式金氧半256像素感測及雙向刺激晶片設計
5. 應用於脊髓神經訊號記錄之四通道互補式金氧半類比前端生理訊號截取電路
6. 應用於植入式生醫元件之互補式金氧半13.56-MHz高效率主動式一/三倍壓整流器和低壓降穩壓器之設計
7. 應用於植入式醫療系統單晶片之互補式金氧半低功率整數型串接式鎖相迴路之研製
8. 用於植入式生醫元件之低功率十位元每秒五十萬次取樣差量調變逐次漸進式類比數位轉換器
9. 應用於生醫植入晶片系統的全整合式金氧半多重低壓降穩壓器設計
10. 應用於植入式神經輔具之互補式金屬氧化物半導體積體電路與系統晶片設計與分析
11. 應用於生醫元件之互補式金氧半13.56-MHz高效率主動式倍壓整流器和低壓降穩壓器設計
12. 應用於生醫元件之醫療用頻段互補式金氧半全波偵測開關式鍵移傳收器
13. 應用於神經訊號記錄之六十五奈米互補式金氧半八通道類比前端電路
14. 應用於植入式生醫元件之互補式金氧半13.56-MHz具有新型低功率相位鍵移解調變器之功率與資料傳送系統
15. 應用於下視網膜植入具互補式金氧半太陽能電池供電及影像與電源分區架構之電流刺激晶片設計