跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/16 06:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李致葳
論文名稱:利用實驗驗證場效電晶體之汲極與源極之遠距庫倫效應
論文名稱(外文):Experimental Evidence for MOSFET S/D Long-Range Coulomb Effects
指導教授:陳明哲陳明哲引用關係
指導教授(外文):Chen, Ming-jer
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:60
中文關鍵詞:遠距庫倫遷移率
外文關鍵詞:mobilitylong-range
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
由近年研究得知,元件尺寸縮減時電子遷移率會伴隨遞減,這也指出了有額外的碰撞機制存在,並且此機制會對下一世代的元件造成很大的影響。因此本篇論文主旨係利用實驗萃取額外遷移率之溫度係數,進而探討N型超短通道場效電晶體下的散射機制。研究內容主要為我們第一次提出實驗證據對於當元件實際通道長度小於40奈米會被存在於高濃度的源極與汲極的電漿電子所造成的遠距庫倫散射機制所影響。這一系列的的研究方法為透過載子遷移率的溫度效應以及利用二維模擬器對元件建立的模型來取得重要參數。此外,我們也提供了另一項證據,是我們在大汲極電壓下量測到的轉導值與文獻中考慮遠距庫倫效應下的模擬值相符。
Electron mobility degradation is currently encountered in highly scaled devices. This means that additional scattering mechanisms exist and will become profoundly important in next generation of devices. The aim of this work is to, for first time, present experimental evidence for the existence of long-range Coulomb effects due to plasmons (collective behaviors of fluctuating dipoles) in high-density source/drain (S/D) of MOSFETs, particularly for the metallurgical channel length less than about 40 nm. This is obtained through temperature-dependent mobilities via TCAD-based inverse modeling. Other evidence is further produced in terms of the measured transconductance at high drain voltage, which is comparable with that of sophisticated simulations in the literature taking into account long-range Coulomb interactions.
Chinese Abstract I
Abstract II
Acknowledgements III
Contents IV
Figure Captions VI
Table Captions IX

Chapter 1 Introduction 1

Chapter 2 Experiment 3
2.1 C-V Fitting 3
2.2 Measurement Method and Experimentally Assessed Effective Inversion-Layer Mobility 4

Chapter 3 Inverse Modeling 6
3.1 Drift-diffusion Model 6
3.2 Calculation of Inversion Layer Charge Density 8
3.3 Extraction of Parasitic Source/Drain Resistance 9

Chapter 4 Analysis and Discussion 12
4.1 Additional Mobilities 12
4.2 Main Source of Mobility Degradation in Short-channel Device 13
4.3 Evidence of Long-range Coulomb Interactions 15

Chapter 5 Conclusion 16
References 17
Figures 17
[1] M. V. Fischetti , S. Jin , T.-W. Tang , P. Asbeck , Y. Taur , S. E. Laux , M. Rodwell and N. Sano, “Scaling MOSFETs to 10 nm: Coulomb effects, source starvation, and virtual source model,” J. Comput. Electron., vol. 8, p.60 , 2009.
[2] M. V. Fischetti and S.E. Laux, “Long-range Coulomb interactions in small Si devices. Part Ⅰ: Performance and reliability,” J. Appl. Phys., vol. 89, no. 2, pp. 1232-1248, January 2001.
[3] K. Rim, S. Naeasimha, M. Longstreet, A. Mocuta, and J. Cai, “Low field Mobility characteristics of sub-100 nm unstrained and strained si MOSFETs,” in IEDM Tech. Dig. , pp. 43-46, 2002.
[4] Antoine Cros, Krunoslav Romanjek, Dominique Fleury, Samuel Harrison, Robin Cerutti, Philippe Coronel, Benjamin Dumont, Arnaud Pouydebasque, Romain Wacquez, Blandine Duriez, Romain Gwoziecki, Frederic Boeuf, Hugues Brut, Gerard Ghibaudo and Thomas Skotnicki, “Unexpected mobility degradation for very short devices: A new challenge for CMOS scaling,” in IEDM Tech. Dig., pp. 663-666, 2006.
[5] Vincent Barral, Thierry Poiroux, Daniela Munteanu, Jean-Luc Autran, and Simon Deleonibus, ‘Experimental investigation on the quasi-ballistic transport: part II—backscattering coefficient extraction and link with the mobility,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 420-430, March. 2009.
[6] P.Packan, S.Cea, H.Deshpande, T.Ghani, M.Giles, O.Golonzka, M.Hattendorf, R.Kotlyar, K.Kuhn, A.Murthy, P.Ranade, L.Shifren, C.Weber and K.Zawadzki, “High performance Hi-K + metal gate strain enhanced transistors on (110) Silicon,” in IEDM Tech. Dig., pp. 63-66, 2008.
[7] M. V. Fischetti, “Long-range Coulomb interactions in small Si devices Part II. Effective electron mobility in thin-oxide structures,” J. Appl.Phys., vol. 89, no. 2, pp. 1232–1250, Jan. 2001.
[8] Ming-Jer Chen, Li-Ming Chang, Shin-Jiun Kuang, Chih-Wei Lee, Shang-Hsun Hsieh, Chi-An Wang, Sou-Chi Chang, and Chien-Chih Lee, “Temperature-oriented mobility measurement and simulation to assess surface roughness in ultrathin-gate-oxide ( ~1 nm) nMOSFETs and Its TEM evidence,” IEEE Trans. Electron Devices, vol. 59, no. 4, pp. 949-955, April. 2012.
[9] Schred, http://nanohub.org/resources/schred.
[10] M. J. Chen, C. C. Lee, and K. H. Cheng, “Hole effective masses as a booster of self-consistent six-band k‧p simulation in inversion layers of pMOSFETs,” IEEE Trans. Electron Devices, vol. 58, pp. 931-937, April 2011.
[11] S. Takagi and M. Takayanagi, “Experimental evidence of inversion-layer mobility lowering in ultrathin gate oxide metal-oxide-semiconductor field-effect-transistors with direct tunneling current,” Jpn. J. Appl. Phys., vol. 41, pt. 1, no. 4B, pp. 2348-2352, Apr. 2002.
[12] TCAD. http://www.synopsys.com/Tools/TCAD/Pages/default.aspx.
[13] D.W. Lin, M. L. Cheng, S.W.Wang, C. C.Wu, and M. J. Chen, “A novel method of MOSFET series resistance extraction featuring constant mobility criteria and mobility universality,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 890–897, Apr. 2010.
[14] K. Romanjek, F. Andrieu, T. Ernst, and G. Ghibaudo, "Improved split C-V method for effective mobility extraction in sub-0.1-μm Si MOSFETs," IEEE Electron Devices Letters, vol. 25, no. 8, pp. 583-585, Aug. 2004.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top