跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 11:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉婷銜
研究生(外文):Yeh, Ting-Hsien
論文名稱:雙閘極金氧半場效電晶體模擬器
論文名稱(外文):Double-gate MOSFET Simulator
指導教授:陳明哲陳明哲引用關係
指導教授(外文):Chen, Ming-Jer
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:57
中文關鍵詞:雙閘極波函數穿隧效應
外文關鍵詞:double-gatewave-function penetration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著元件尺寸的縮減,短通道效應所造成的影響,已成為不可忽略的問題之一。為了解決此問題,多種方法相繼被提出,其中之一即為多閘極場效電晶體的結構,也是現今熱門話題。本篇論文主旨為利用薛丁格和波松方程式自洽及相關物理模型來建立一雙閘極金氧半場效電晶體模擬器,進而幫助我們來了解此結構的相關物理特性。此外,很多的模擬器在解薛丁格和波松方程式自洽時,常常將矽基板和氧化層界面的位能當作無限大來做運算,但真實的矽基板和氧化層界面的位能並不是無限大而是幾電子伏特而已,因此波函數穿隧到氧化層的效應應該被考慮。有鑒於此,我們也將波函數的穿隧效應加入到我們的模擬器中,並討論了穿隧效應的影響及不同的電子穿隧質量對雙閘極場效電晶體所造成的變化。最後,我們也建立了載子遷移率及應力模型來與相關文獻做比較。由比較結果來看,除了在載子遷移率方面還需考慮更多的散射機制外,不論是否有考慮穿隧效應,我們的模擬器都和Schred軟體及相關論文結果相符,具有一定的準確性。
It is well known that the scaling of the traditional bulk MOSFETs would encounter several issues like the short channel effects (SCE). To deal with this problem, many of methods have been proposed, one of which is new device architectures, such as multi-gate structures. The aim of this work is to develop a double-gate n-MOSFET simulator by using self-consistent solving of Schrödinger and Poisson equations with some physical models taken into account. Besides, for many simulators in the literature, the boundary conditions of Schrödinger’s equation are often making an infinite potential barrier height at the silicon/gate-oxide interface. Nevertheless, we know that the actual barrier height is finite and is equal to a few electron-volts. Therefore, wave-function actually can penetrate into the gate-oxide dielectric. Hence, we also add wave-function penetration effect to our simulator, and discuss the influences of penetration effect and electron tunneling effective mass on the double-gate structure performance. Finally, we also build mobility and stress related model, and compare those with literature values. From the comparison results, our simulations are consistent with Schred as well as with some articles with and without wave-function penetration included, except for the mobility of thinner substrate thickness which should consider more scattering mechanisms. That is to say, our simulator comes to be reasonable for calculating fundamental properties in DG n-MOSFETs.
Chapter 1 Introduction 1
Chapter 2 Theory and Procedure of Simulator 3
2.1 Theory 3
2.1.1 Time-independent Schrödinger Equation 3
2.1.2 Newton-Raphson Method 4
2.2 Procedure of DG n-MOSFETs Simulator 6
2.2.1 Schrődinger and Poisson Self-consistent 6
2.2.2 Other Physical Model 8
Chapter 3 Wave-Function Penetration Effect 10
Introduction 10
3.1 Time-independent Schrödinger Equation With considering Wave-Function Penetration Effect 10
3.2 Procedure of DG-NEP Simulator With considering Wave-Function Penetration Effect 12
3.3 Physical Model of DG-NEP Simulator With considering Wave-Function Penetration Effect 13
Chapter 4 Electron Mobility and Stress Model 14
4.1 Electron Mobility Model 14
4.1.1 Introduction 14
4.1.2 Phonon Scattering Mechanism and Model 14
4.1.3 Surface Roughness Scattering Mechanism and Model 17
4.1.4 Derivation of Two-Dimensional Mobility 17
4.2 Stress Model 18
Chapter 5 Simulation Results and Discussion 20
5.1 Basic Properties of Double-gate n-MOSFET (Subband Energy, Wave-Function, and Electron Density…) 20
5.2 Influence of Tunneling Mass on Penetration Effect 21
Chapter 6 Conclusion 23
References 24
[1] A. DasGupta, “Multiple Gate MOSFETs: The Road to Future,” in Proceedings of the 2007 International Workshop on the Physics of Semiconductor Devices (IWPSD), pp. 96-101, Sep. 2007.
[2] Schred. [Online]. Available http://nanohub.org/resources/schred .
[3] A. M. Cruz Serra and H. Abreu Santos, “A one-dimensional, self-consistent numerical solution of Schrődinger and Poisson equations,” J. Appl. Phys., vol. 70, no. 5, pp. 2734-2738, Sep. 1991.
[4] S. Datta, Quantum Phenomena, Cambridge University Press, Cambridge, UK, 1989.
[5] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., vol. 80, no. 3, p. 1567, Aug. 1996.
[6] K. Uchida, A. Kinoshita, and M. Saitoh, “Carrier transport in (110) nMOSFETs: Subband structures, non-parabolicity, mobility characteristics, and uniaxial stress engineering, ” in IEDM Tech. Dig., pp.1019-1021, 2006
[7] S. Yamakawa, H. Ueno, K. Taniguchi, C. Hamaguchi, K. Miyatsuji, K. Masaki, and U. Ravaioli, “Study of interface roughness dependence of electron mobility in Si inversion layers using the Monte Carlo method,” J. Appl. Phys., vol. 79, no. 2, pp. 911–916, Jan. 1996.
[8] Roy R. Craig, Jr., Mechanics of Materials, second edition, John Wiley & Sons inc.,1999.
[9] Wikipedia (http://en.wikipedia.org/wiki/Main_Page)
[10] F. Yoshida, “Fundamentals of elastic plastic mechanics”, Wu-Nan Book Inc., Taiwan, 2007.
[11] H. A. Reuda, “Modeling of mechanical stress in silicon isolation technology and its influence on device characteristics,” dissertation of degree of doctor of philosophy, university of Florida, 1999.
[12] M. Shoji and S. Horiguchi, “Electronic structures and phonon limited electron mobility of double-gate silicon-on-insulator Si inversion layers,” J. Appl. Phys., vol. 85, no. 5, pp. 2722–2731, Mar. 1999.
[13] N. Barin, C. Fiegna, and E. Sangiorgi, “Analysis of strained silicon on insulator double gate MOS structures,” 2004 Eur. Solid-State Device Research Conf., pp. 169-172, 2004.
[14] F. Gamiz and M. V. Fischetti, “Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion, ” J. Appl. Phys., vol. 89, no. 10, pp. 5478–5487, May 2001
[15] M. K. Alam, A. Alam, S. Ahmed, M. G. Rabbani and Q. D. M. Khosru,“Wavefunction penetration effect on C-V characteristic of double gate MOSFET, ” ISDRS 2007, December 12-14, 2007, College Park, MD, USA.
[16] K. Uchida, T. Krishnamohan, K. C. Saraswat, and Y. Nishi, “Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime,” in IEDM Tech. Dig., pp. 135–138, 2005.
[17] S. Mudanai, L. F. Register, A. F. Tasch, and S. K. Banerjee, “Understanding the effects of wave function penetration on the inversion layer capacitance of NMOSFETs,” IEEE Electron Device Lett., vol. 22, no. 3, pp. 145–147, Mar. 2001.
[18] Y. Nakamori, K. Moriguchi, K. Komiya, and Y. Omura, “Physics-based model of quantum–mechanical wave function penetration into thin dielectric films for evaluating modern MOS capacitors,” Solid State Electron., vol. 49, no. 7, pp. 1118–1126, Jul. 2005.
[19] R. Iijima, L. F. Edge, V. Paruchuri, and M. Takayanagi, “Characterization of inversion-layer capacitance of electrons in high- k/metal gatestacks,” IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 2814–2820,Nov. 2010.
[20] D. Esseni, M. Mastrapasqua, C. Fiegna, G. K. Celler, L. Selmi, and E. Sangiorgi, “An experimental study of low field electron mobility in double-gate, ultrathin SOI MOSFETs,” in IEDM Tech. Dig., pp.445–448, 2001.
[21] D. Esseni, A. Abramo, L. Selmi, and E. Sangiorgi, “Physically based modeling of low field electron mobility in ultra-thin single and double gate SOI n-MOSFETs,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2445–2455, Dec. 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top