|
Chapter 1 [1] C.-W. Chen, C.-H. Chien, Y.-C. Chen, S.-L. Hsu, and C.-Y. Chang, “Deep sub-micron strained Si0.85Ge0.15 channel p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultra-thin N2O-annealed SiN gate dielectric,” Jpn. J. Appl. Phys., vol. 44, p. L278, 2005. [2] N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, and S. Kimura, “Performance enhancement of strained-Si MOSFETs fabricated on a chemical-mechanical-polished SiGe substrate,” IEEE Trans. Electron Devices, vol. 49, p. 2237, 2002. [3] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters Volume 1: Si, Ge, C(diamond), GaAs, GaP, GaSb, InAs, InP, InSb, World Scientific, Singapore, 1996. [4] D. Kuzum, A. J. Pethe, T. Krishnamohan, and K. C. Saraswat, “Ge (100) and (111) n- and p-FETs with high mobility and low-T mobility characterization,” IEEE Trans. Electron Devices, vol. 56, p. 648, 2009. [5] G. Nicolas, B. De Jaeger, D. P. Brunco, P. Zimmerman, G. Eneman, K. Martens, M. Meuris, and M. M. Heyns, “High-performance deep submicron Ge pMOSFETs with halo implant,” IEEE Trans. Electron Devices, vol. 54, p. 2503, 2007. [6] H.-C. Chin, M. Zhu, Z.-C. Lee, X. Liu, K.-M. Tan, H. K. Lee, L. Shi, L.-J. Tang, C.-H. Tung, G.-Q. Lo, L.-S. Tan, and Y.-C. Yeo, “A new silane-ammonia surface passivation technology for realizing inversion-type surface channel GaAs n-MOSFET with 160nm gate length and high-quality metal-gate/high-k dielectric stack,” IEEE Int. Electron Device Meet. Tech. Dig., p. 383, 2008. [7] N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampati, M. Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M. B. Santos, J. Lee, S. Datta, and W. Tsai, “Addressing the gate stack challenge for high mobility InxGa1-xAs channels for nFETs,” IEEE Int. Electron Device Meet. Tech. Dig., p. 363, 2008. [8] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, “High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (Vcc=0.5V) logic applications,” IEEE Int. Electron Device Meet. Tech. Dig., p. 707, 2008. [9] International Technology Roadmap for Semiconductors (ITRS) 2010 Edition, http://www.itrs.net/links/2010itrs/home2010.htm [10] T. Iisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, N. Sugiyama, and S. Takagi, “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Trans. Electron Devices, vol. 55, p. 21, 2008. [11] S. Takagi, and M. Takenaka, “III-V/Ge CMOS technologies on Si platform,” IEEE Symposium on VLSI Technology, p. 147, 2010. [12] S. Takagia, T. Tezukab, T. Irisawab, S. Nakaharaib, T. Numatab, K. Usudab, N. Sugiyamab, M. Shichijoc, R. Nakanec, S. Sugaharad, “Device structures and carrier transport properties of advanced CMOS using high mobility channels,” Solid-State Electron., vol. 51, p. 526, 2007.
Chapter 2 [1] R. Chau, S. Datta, and A. Majumdar, “Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications,” IEEE Compound Semiconductor Integrated Circuit Symposium, (IEEE, New York, 2005). [2] K. Brennan, and K. Hess, “High field transport in GaAs, InP, and InAs,” Solid-State Electron., vol. 27, p. 643, 1984. [3] H.-S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, L. Yu, and J. C. Lee, “Ultrathin HfO2 (equivalent oxide thickness = 1.1 nm) metal-oxide-semiconductor capacitors on n-GaAs substrate with germanium passivation,” Appl. Phys. Lett., vol. 88, p. 252906, 2006. [4] H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, “Metal gate-HfO2 metal-oxide-semiconductor capacitors on n-GaAs substrate with silicon/germanium interfacial passivation layers,” Appl. Phys. Lett., vol. 89, p. 222903, 2006. [5] S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, “Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer,” Appl. Phys. Lett., vol. 88, p. 022106, 2006. [6] D. Shahrjerdi, E. Tutuc, and S. K. Banerjee, “Impact of surface chemical treatment on capacitance-voltage characteristics of GaAs metal-oxide-semiconductor capacitors with Al2O3 gate dielectric,” Appl. Phys. Lett., vol. 91, p. 063501, 2007. [7] Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, “Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric,” Appl. Phys. Lett., vol. 88, p. 263518, 2006. [8] M. M. Frank, G. D. Wilk, D. Starodub, T. Guatafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, p. 152904, 2005. [9] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett., vol. 92, p. 071901, 2008. [10] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, “Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces,” Appl. Phys. Lett., vol. 93, p. 252905, 2008. [11] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3,” Appl. Phys. Lett., vol. 87, p. 252104, 2005. [12] C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, and J. Kwo, “Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As,” Appl. Phys. Lett., vol. 89, p. 242911, 2006. [13] C. H. Hou, M. C. Chen, C. H. Chang, T. B. Wu, and C. D. Chiang, “Interfacial Cleaning Effects in Passivating InSb with Al2O3 by Atomic Layer Deposition,” Electrochem. Solid-State Lett., vol. 11, p. D60, 2008. [14] C. H. Hou, M. C. Chen, C. H. Chang, T. B. Wu, C. D. Chiang, and J.J. Luo, “Effects of Surface Treatments on Interfacial Self-Cleaning in Atomic Layer Deposition of Al2O3 on InSb,” J. Electrochem. Soc., vol. 155, p. G180, 2008. [15] H.-S. Kim, I. Ok, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, J. C. Lee, P. majhi, N. Goel, W. Tsai, C. K. Gaspe, and M. B. Santos, “A study of metal-oxide-semiconductor capacitors on GaAs, In0.53Ga0.47As, InAs, and InSb substrates using a germanium interfacial passivation layer,” Appl. Phys. Lett., vol. 93, p. 062111, 2008. [16] N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Xuan, and P. D. Ye, “Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric,” Appl. Phys. Lett., vol. 92, p. 143507, 2008. [17] Y. Yuan, L. Wang, B. Yu, B. Shih, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A Distributed Model for Border Traps in Al2O3 – InGaAs MOS Devices,” IEEE Electron Device Lett., vol. 32, p. 485, 2011. [18] Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A distributed Bulk-Oxide Trap Model for Al2O3 InGaAs MOS Devices,” IEEE Trans. Electron Devices, vol. 59, p. 2100, 2012.
Chapter 3 [1] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics,” IEEE Int. Electron Device Meet. Tech. Dig., p. 27, 2000. [2] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si,” IEEE Int. Electron Device Meet. Tech. Dig., p. 145, 1999. [3] M. Houssa, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, “Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation,” Appl. Phys. Lett., vol. 77, p. 1885, 2000. [4] C. M. Perkins, B. B. Triplett, P. C. Mclntyre, K. C. Saraswat, S. Haukka, and M. Tuominen, “Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition,” Appl. Phys. Lett., vol. 78, p. 2357, 2001. [5] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, p. 5243, 2001. [6] R. Choi, C. S. Kang, B. H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan, and J. C. Lee, “High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” IEEE Symposium on VLSI Technology, p. 15, 2001. [7] J. C. Lee, H. J. Cho, C. S. Kang, S. J. Rhee, Y. H. Kim, R. Choi, C. Y. Kang, C. Choi, and M. Abkar, “High-k dielectrics and MOSFET characteristics,” IEEE Int. Electron Device Meet. Tech. Dig., p. 95, 2003. [8] Y.-S. Lai, K.-J. Chen, and J. S. Chen, “Investigation of the interlayer characteristics of Ta2O5 thin films deposited on bare, N2O, and NH3 plasma nitridated Si substrates,” J. Appl. Phys., vol. 91, p. 6428, 2002. [9] S. Maikap, J.-H. Lee, R. Mahapatra, Samik Pal, Y.S. No, W.-K. Choi, S.K. Ray, and D.-Y. Kim, “Effects of interfacial NH3/N2O-plasma treatment on the structural and electrical properties of ultra-thin HfO2 gate dielectrics on p-Si substrates,” Solid-State Electron., vol. 49, p. 524, 2005. [10] H. Kim, C. O. Chui, K. C. Saraswat, M.-H. Cho, and P. C. McIntyre, “Interfacial characteristics of HfO2 grown on nitrided Ge (100) substrates by atomic-layer deposition,” Appl. Phys. Lett., vol. 85, p. 2902, 2004. [11] N. Lu, W. Bai, A. Ramirez, C. Mouli, A. Ritenour, M. L. Lee, D. Antoniadis, and D. L. Kwong, “Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO2 dielectric,” Appl. Phys. Lett., vol. 87, p. 051922, 2005. [12] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Appl. Phys. Lett., vol. 76, p. 2244, 2000. [13] S. J. Whang, S. J. Lee, F. Gao, N. Wu, C. X. Zhu, L. J. Tang, L. S. Pan, and D. L. Kwong, “Germanium p- & n-MOSFETs fabricated with novel surface passivation (plasma-PH3 and AlN) and HfO2/TaN gate stack,” IEEE Int. Electron Device Meet. Tech. Dig., p. 307, 2004. [14] H. Niimi and G. Lucovsky, “Monolayer-level controlled incorporation of nitrogen at Si–SiO2 interfaces using remote plasma processing,” J. Vac. Sci. Technol. A, vol. 17, p. 3185, 1999. [15] T. Sugawara, Y. Oshima, R. Sreenivasan, and P. C. McIntyre, “Electrical properties of germanium/metal-oxide gate stacks with atomic layer deposition grown hafnium-dioxide and plasma-synthesized interface layers,” Appl. Phys. Lett., vol. 90, p. 112912, 2007. [16] Y.-H. Jeong, S. Takagi, F. Arai, and T. Sugano, “Effects on InP surface trap states of in situ etching and phosphorus-nitride deposition,” J. Appl. Phys., vol. 62, p. 2370, 1987. [17] F. Gao, S. J. Lee, R. Li, S. J. Whang, S. Balakumar, D. Z. Chi, C. C. Kean, S. Vicknesh, C. H. Tung, and D. L. Kwong, “GaAs p- and n-MOS Devices Integrated with Novel passivation (Plasma Nitridation and AlN-surface passivation) techniques and ALD-HfO2/TaN gate stack,” IEEE Int. Electron Device Meet. Tech. Dig., p. 833, 2006.
Chapter 4 [1] M. Passlack, R. Droopad, and G. Brammertz, “Suitability study of oxide/gallium arsenide interfaces for MOSFET applications,” IEEE Trans. Electron Devices, vol. 57, p.2944, 2010. [2] Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, and P. D. Ye, “High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al2O3, HfO2, HfAlO as gate dielectrics,” IEEE Int. Electron Device Meet. Tech. Dig., p. 637, 2007 [3] N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, and J. S. Harris, “InGaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer-deposition,” Appl. Phys. Lett., vol. 89, p. 163517-1, 2006. [4] E. J. Kim, E. Chagarov, J. Cagnon, Y. Yuan, A. C. Kummel, P. M. Asbeck, S. Stemmer, K. C. Saraswat, and P. C. McIntyre, “Atomically abrupt and unpinned Al2O3/In0.53Ga0.47As interfaces: experiment and simulation,” J. Appl. Phys., vol. 106, p.124508-1, 2009. [5] G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, Meuris, and Heyns, “Characteristics trapping lifetime and capacitance-volatage measurements of GaAs metal-oxide-semiconductor structures,” Appl. Phys. Lett., vol. 91, p. 133510-1, 2007. [6] Y. Hwang, R. Engel-Herbert, N. G. Rudawski, and S. Stemmer, “Effect of postdeposition anneals on Fermi level response of HfO2/In0.53Ga0.47As gate stacks,” J. Appl. Phys., vol. 108, p.034111-1, 2010. [7] E. H. Nicollian, and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. New York: Wiley, 1982. [8] W. Shockley, and W. T. Read, Jr., “Statistics of recombinations of holes and electrons,” Phys. Rev., vol. 87, p. 835, 1952. [9] F. P. Heiman, and G. Warfield, “The effects of oxide traps on the MOS capacitance,” IEEE Trans. Electron Devices, vol. ED-12, p.167, 1965. [10] Y. Yuan, L. Wang, B. Yu, B. Shih, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A Distributed Model for Border Traps in Al2O3 – InGaAs MOS Devices,” IEEE Electron Device Lett., vol. 32, p. 485, 2011. [11] Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A distributed Bulk-Oxide Trap Model for Al2O3 InGaAs MOS Devices,” IEEE Trans. Electron Devices, vol. 59, p. 2100, 2012. [12] H. Prier, “Contribution of surface states to MOS impedance,” Appl. Phys. Lett., vol. 10, p. 361, 1967. [13] D. S. L. Mui, J. Reed, D. Biswas, and H. Morkoc, “A new circuit model for tunneling related trapping at insulator-semiconductor interfaces in accumulation,” J. Appl. Phys., vol. 72, p. 553, 1992. [14] J. P. Campbell, J. Qin, K. P. Cheung, L. C. Yu, J. S. Suehel, A. Oates, and K. Sheng, “Random telegraph noise in highly scaled nMOSFETs,” in Proc. IEEE Int. Rel. Phys. Symp. Tech. Dig., p. 382, 2009. [15] H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder, “The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress,” in Proc. IEEE Int. Rel. Phys. Symp. Tech. Dig., p. 7, 2010. [16] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer, “The time dependent defect spectroscopy for characterization of border traps in metal-oxide-semiconductor transistors,” Phys. Rev. B. vol. 82, p. 245318-1, 2010. [17] D. Garetto, Y. M. Randriamihaja, A. Zaka, D. Rideau, A. Schmid, H. Jaouen, and Y. Leblebici, “Analysis of defect capture cross sections using non-radiative multiphonon-assisted trapping model,” Solid State Electron., vol. 71, p. 74, 2012.
|