跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/14 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林俊池
論文名稱:利用介面鈍化與電漿處理對原子層沉積二氧化鉿/砷化銦金氧半電容之研究
論文名稱(外文):Investigation of Atomic-Layer-Deposition HfO2/InAs Metal-Oxide-Semiconductor Capacitors with Interfacial Passivation and Plasma Treatments
指導教授:簡昭欣
指導教授(外文):Chien, Choa-Hsin
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:112
中文關鍵詞:砷化銦鈍化電漿處理原子層沉積二氧化鉿
外文關鍵詞:InAspassivationplasma treatmentatomic-layer-depositionHfO2
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,首先我們研究了在原子層沉積主要高介電常數絕緣層前利用前驅物做”自我清潔”的預處理,其中有三氧化二鋁的前驅物-三甲基鋁[TMA, Al(CH3)3],以及二氧化鉿的前驅物-四(乙基甲基氨基)鉿[Hf(N(C2H5)(CH3))4]。之後沉積不同的閘極介電層,分別是三氧化二鋁以及二氧化鉿,和前驅物預處理採用排列組合方式選出三種閘極介電層。並藉由二種後沉積熱過程,後沉積退火400度120秒以及300度30分鐘氫氣氮氣混合之熱退火。我們發現利用後沉積退火對於成長不同高介電常數絕緣層之砷化銦金氧半電容電性上並無明顯的趨勢,反之利用300度30分鐘氫氣氮氣混合之熱退火則大幅改善了各種高介電常數絕緣層以及絕緣層/砷化銦介面的品質。三種不同的閘極介電層各經過300度30分鐘氫氣氮氣混合之熱退火,三甲基鋁[TMA, Al(CH3)3]前驅物預處理/二氧化鉿閘極介電層擁有最佳化的電性條件,並且將此閘極介電層繼續進行下一步的電漿研究。
其次,我們研究了在原子層沉積閘極介電層中加以不同次數之氧氣電漿處理,觀察其對二氧化鉿/砷化銦金氧半電容電性之影響。我們發現當採用高次數電漿處理時,二氧化鉿/砷化銦金氧半電容在聚積、空乏、以及反轉區域有比較小的頻率分散現象,表示其對於閘極介電層以及閘極介電層/砷化銦介面的品質有較好的改善能力。再經過300度30分鐘氫氣氮氣混合之熱退火則可以進一步改善閘極介電層以及介電層/砷化銦介面的品質。
最後,我們利用建立一個閘極介電層內缺陷的模型解釋基板在操作大閘極偏壓下其費米能階附近的電子和閘極介電層內缺陷的穿隧機制。利用此模型所計算出的參數和實驗所得的多重頻率下電容-電壓與電導-電壓數據做媒合,可以定量地萃取出在閘極介電層內的缺陷密度-單位為體密度而非傳統介面捕捉缺陷密度-面密度。

In this thesis, first of all, we investigated the “self-cleaning” pretreatment before the main high-k dielectric in atomic-layer-deposition system, by the precursor of Al2O3 - trimethyl aluminum [TMA, Al(CH3)3], and the precursor of HfO2 - tetrakis(ethylmethylamino)hafnium [TEMAH, Hf(N(C2H5)(CH3))4]. Then the high-k dielectrics, Al2O3 and HfO2 with precursors trimethyl aluminum [TMA, Al(CH3)3] and tetrakis(ethylmethylamino)hafnium [TEMAH, Hf(N(C2H5)(CH3))4] were chosen three gate dielectrics by the way of permutation and combination. And we applied two post-deposition thermal processes, post deposition annealing (400°C/120s) and forming gas annealing (300°C/30min.). We found that there was not clear trend for InAs MOS capacitors with different high-k dielectrics in post deposition annealing. However, adopting forming gas annealing, the obvious improvement on high-k dielectrics and high-k dielectric/InAs interface quality was observed. For three different gate dielectrics, all of them in forming gas annealing (300°C/30min.), TMA/HfO2 gate dielectric has the optimum electrical properties. Then, we utilized this dielectric to further research in plasma treatments.
Secondly, we investigated the effects on the HfO2/InAs MOS capacitors by various numbers of times in plasma treatments during the process of atomic-layer-deposition. It is observed that there are weak frequency dispersion in the regions of accumulation, depletion, and inversion, by using higher times of plasma treatment. This represented that the ability of improving high-k dielectrics and high-k dielectric/InAs interface quality is great for high plasma density treatment. By applying forming gas annealing (300°C/30min.), the high-k dielectrics and high-k dielectric/InAs interface quality were further improved.
Finally, we built up a model to explain the tunneling mechanism between the electrons near Fermi level of the substrate and traps in the gate dielectric which is operated at high gate bias. We fitted the calculations of the model with experimental data, multi-frequency C-V and G-V, and then we could quantitatively extract the traps density in the gate dielectric, which is in unit of volume density. Unlike interface state, is in unit of areal density.

Abstract (Chinese) I
Abstract (English) III
Acknowledgement V
Contents VII
Table Captions X
Figure Captions XII

Chapter 1 ……..1
1.1 Overview of CMOS Reasearch Roadmap and Device Scaling Issues 1
1.2 Device and Process Challenge and Issues in High Mobility Channels on Si 3
1.3 Scope and Organization of the Thesis 5
References (Chapter 1) 7
Chapter 2 12
2.1 Introduction 12
2.2 Experimental Procedures of InAs nMOSCAPs 13
2.2.1 ALD-TMA/Al2O3 Growth and Capacitor Fabrication…………………....13
2.2.2 ALD-TEMAH/HfO2 Growth and Capacitor Fabrication…………………15
2.2.3 ALD-TMA/HfO2 Growth and Capacitor Fabrication…………………….16
2.3 Capacitors Characteristics of InAs nMOSCAPs with Different Post-Deposition
Thermal Processes………................................................................................. 17
2.3.1 C-V and G-V Properties of InAs nMOSCAPs w/ PDA 18
2.3.2 The Effect of Forming Gas Annealing on Electrical Characteristics 19
2.3.3 The Effect of PDA+FGA on Electrical Characteristics…………………...21
2.4 Comparison of Different High-κ Dielectrics on Electrical Characteristics……23
2.5 Summary 23
References (Chapter 2) 24
Chapter 3 42
3.1 Introduction 42
3.2 Experimental Procedures of Pt/Ti/TMA+HfO2 w/ or w/o O2-Plasma Treatment
………………………………………………………………………………………………………………………43
3.3 Capacitors Characteristics of InAs nMOSCAPs with Various O2-Plasma
Treatments via Different Post-Deposition Thermal Processes………………...45
3.3.1 C-V and G-V Properties of InAs nMOSCAPs w/ PDA……………….......46
3.3.2 The Effect of Forming Gas Annealing on Electrical Characteristics……..49
3.3.3 The Effect of PDA+FGA on Electrical Characteristics…………………...50
3.4 Comparison of Different Plasma Treatments………………………………….52
3.4.1 Comparison of Different Number of Times for Plasma Treatments.....…..52
3.4.2 The Effect of Plasma Treatments on Electrical Characteristics……..…....53
3.5 Summary……………………………………………………………………….53
References (Chapter 3)…………………………………………………………….55
Chapter 4 85
4.1 Introduction 85
4.2 The Distributed Bulk-Oxide Traps Model 86
4.3 Correlation of the Model with Multi-Frequency C-V and G-V Experimental
Data in Strong Accumulation and Depletion Regions…………………………90
4.4 Summary 92
References (Chapter 4) 93
Chapter 5 109
5.1 Conclusions of This Study…………………………………………………...109
5.2 Suggestions for Future Research……………………………………………..110
Vita………………………………………………………………………………….112
Chapter 1
[1] C.-W. Chen, C.-H. Chien, Y.-C. Chen, S.-L. Hsu, and C.-Y. Chang, “Deep sub-micron strained Si0.85Ge0.15 channel p-channel metal-oxide-semiconductor field-effect transistors (pMOSFETs) with ultra-thin N2O-annealed SiN gate dielectric,” Jpn. J. Appl. Phys., vol. 44, p. L278, 2005.
[2] N. Sugii, D. Hisamoto, K. Washio, N. Yokoyama, and S. Kimura, “Performance enhancement of strained-Si MOSFETs fabricated on a chemical-mechanical-polished SiGe substrate,” IEEE Trans. Electron Devices, vol. 49, p. 2237, 2002.
[3] M. Levinshtein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters Volume 1: Si, Ge, C(diamond), GaAs, GaP, GaSb, InAs, InP, InSb, World Scientific, Singapore, 1996.
[4] D. Kuzum, A. J. Pethe, T. Krishnamohan, and K. C. Saraswat, “Ge (100) and (111) n- and p-FETs with high mobility and low-T mobility characterization,” IEEE Trans. Electron Devices, vol. 56, p. 648, 2009.
[5] G. Nicolas, B. De Jaeger, D. P. Brunco, P. Zimmerman, G. Eneman, K. Martens, M. Meuris, and M. M. Heyns, “High-performance deep submicron Ge pMOSFETs with halo implant,” IEEE Trans. Electron Devices, vol. 54, p. 2503, 2007.
[6] H.-C. Chin, M. Zhu, Z.-C. Lee, X. Liu, K.-M. Tan, H. K. Lee, L. Shi, L.-J. Tang, C.-H. Tung, G.-Q. Lo, L.-S. Tan, and Y.-C. Yeo, “A new silane-ammonia surface passivation technology for realizing inversion-type surface channel GaAs n-MOSFET with 160nm gate length and high-quality metal-gate/high-k dielectric stack,” IEEE Int. Electron Device Meet. Tech. Dig., p. 383, 2008.
[7] N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampati, M. Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M. B. Santos, J. Lee, S. Datta, and W. Tsai, “Addressing the gate stack challenge for high mobility InxGa1-xAs channels for nFETs,” IEEE Int. Electron Device Meet. Tech. Dig., p. 363, 2008.
[8] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, “High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (Vcc=0.5V) logic applications,” IEEE Int. Electron Device Meet. Tech. Dig., p. 707, 2008.
[9] International Technology Roadmap for Semiconductors (ITRS) 2010 Edition, http://www.itrs.net/links/2010itrs/home2010.htm
[10] T. Iisawa, T. Tezuka, T. Numata, S. Nakaharai, N. Hirashita, Y. Moriyama, K. Usuda, E. Toyoda, S. Dissanayake, M. Shichijo, R. Nakane, S. Sugahara, M. Takenaka, N. Sugiyama, and S. Takagi, “Carrier-Transport-Enhanced Channel CMOS for Improved Power Consumption and Performance,” IEEE Trans. Electron Devices, vol. 55, p. 21, 2008.
[11] S. Takagi, and M. Takenaka, “III-V/Ge CMOS technologies on Si platform,” IEEE Symposium on VLSI Technology, p. 147, 2010.
[12] S. Takagia, T. Tezukab, T. Irisawab, S. Nakaharaib, T. Numatab, K. Usudab, N. Sugiyamab, M. Shichijoc, R. Nakanec, S. Sugaharad, “Device structures and carrier transport properties of advanced CMOS using high mobility channels,” Solid-State Electron., vol. 51, p. 526, 2007.

Chapter 2
[1] R. Chau, S. Datta, and A. Majumdar, “Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications,” IEEE Compound Semiconductor Integrated Circuit Symposium, (IEEE, New York, 2005).
[2] K. Brennan, and K. Hess, “High field transport in GaAs, InP, and InAs,” Solid-State Electron., vol. 27, p. 643, 1984.
[3] H.-S. Kim, I. Ok, M. Zhang, C. Choi, T. Lee, F. Zhu, G. Thareja, L. Yu, and J. C. Lee, “Ultrathin HfO2 (equivalent oxide thickness = 1.1 nm) metal-oxide-semiconductor capacitors on n-GaAs substrate with germanium passivation,” Appl. Phys. Lett., vol. 88, p. 252906, 2006.
[4] H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, “Metal gate-HfO2 metal-oxide-semiconductor capacitors on n-GaAs substrate with silicon/germanium interfacial passivation layers,” Appl. Phys. Lett., vol. 89, p. 222903, 2006.
[5] S. Koveshnikov, W. Tsai, I. Ok, J. C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, “Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer,” Appl. Phys. Lett., vol. 88, p. 022106, 2006.
[6] D. Shahrjerdi, E. Tutuc, and S. K. Banerjee, “Impact of surface chemical treatment on capacitance-voltage characteristics of GaAs metal-oxide-semiconductor capacitors with Al2O3 gate dielectric,” Appl. Phys. Lett., vol. 91, p. 063501, 2007.
[7] Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, “Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric,” Appl. Phys. Lett., vol. 88, p. 263518, 2006.
[8] M. M. Frank, G. D. Wilk, D. Starodub, T. Guatafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, p. 152904, 2005.
[9] C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Appl. Phys. Lett., vol. 92, p. 071901, 2008.
[10] M. Milojevic, C. L. Hinkle, F. S. Aguirre-Tostado, H. C. Kim, E. M. Vogel, J. Kim, and R. M. Wallace, “Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces,” Appl. Phys. Lett., vol. 93, p. 252905, 2008.
[11] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3,” Appl. Phys. Lett., vol. 87, p. 252104, 2005.
[12] C. H. Chang, Y. K. Chiou, Y. C. Chang, K. Y. Lee, T. D. Lin, T. B. Wu, M. Hong, and J. Kwo, “Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As,” Appl. Phys. Lett., vol. 89, p. 242911, 2006.
[13] C. H. Hou, M. C. Chen, C. H. Chang, T. B. Wu, and C. D. Chiang, “Interfacial Cleaning Effects in Passivating InSb with Al2O3 by Atomic Layer Deposition,” Electrochem. Solid-State Lett., vol. 11, p. D60, 2008.
[14] C. H. Hou, M. C. Chen, C. H. Chang, T. B. Wu, C. D. Chiang, and J.J. Luo, “Effects of Surface Treatments on Interfacial Self-Cleaning in Atomic Layer Deposition of Al2O3 on InSb,” J. Electrochem. Soc., vol. 155, p. G180, 2008.
[15] H.-S. Kim, I. Ok, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, J. C. Lee, P. majhi, N. Goel, W. Tsai, C. K. Gaspe, and M. B. Santos, “A study of metal-oxide-semiconductor capacitors on GaAs, In0.53Ga0.47As, InAs, and InSb substrates using a germanium interfacial passivation layer,” Appl. Phys. Lett., vol. 93, p. 062111, 2008.
[16] N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Xuan, and P. D. Ye, “Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric,” Appl. Phys. Lett., vol. 92, p. 143507, 2008.
[17] Y. Yuan, L. Wang, B. Yu, B. Shih, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A Distributed Model for Border Traps in Al2O3 – InGaAs MOS Devices,” IEEE Electron Device Lett., vol. 32, p. 485, 2011.
[18] Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A distributed Bulk-Oxide Trap Model for Al2O3 InGaAs MOS Devices,” IEEE Trans. Electron Devices, vol. 59, p. 2100, 2012.

Chapter 3
[1] C. H. Lee, H. F. Luan, W. P. Bai, S. J. Lee, T. S. Jeon, Y. Senzaki, D. Roberts, and D. L. Kwong, “MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics,” IEEE Int. Electron Device Meet. Tech. Dig., p. 27, 2000.
[2] W. J. Qi, R. Nieh, B. H. Lee, L. Kang, Y. Jeon, K. Onishi, T. Ngai, S. Banerjee, and J. C. Lee, “MOSCAP and MOSFET characteristics using ZrO2 gate dielectric deposited directly on Si,” IEEE Int. Electron Device Meet. Tech. Dig., p. 145, 1999.
[3] M. Houssa, V. V. Afanas’ev, A. Stesmans, and M. M. Heyns, “Variation in the fixed charge density of SiOx/ZrO2 gate dielectric stacks during postdeposition oxidation,” Appl. Phys. Lett., vol. 77, p. 1885, 2000.
[4] C. M. Perkins, B. B. Triplett, P. C. Mclntyre, K. C. Saraswat, S. Haukka, and M. Tuominen, “Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition,” Appl. Phys. Lett., vol. 78, p. 2357, 2001.
[5] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, p. 5243, 2001.
[6] R. Choi, C. S. Kang, B. H. Lee, K. Onishi, R. Nieh, S. Gopalan, E. Dharmarajan, and J. C. Lee, “High-quality ultra-thin HfO2 gate dielectric MOSFETs with TaN electrode and nitridation surface preparation,” IEEE Symposium on VLSI Technology, p. 15, 2001.
[7] J. C. Lee, H. J. Cho, C. S. Kang, S. J. Rhee, Y. H. Kim, R. Choi, C. Y. Kang, C. Choi, and M. Abkar, “High-k dielectrics and MOSFET characteristics,” IEEE Int. Electron Device Meet. Tech. Dig., p. 95, 2003.
[8] Y.-S. Lai, K.-J. Chen, and J. S. Chen, “Investigation of the interlayer characteristics of Ta2O5 thin films deposited on bare, N2O, and NH3 plasma nitridated Si substrates,” J. Appl. Phys., vol. 91, p. 6428, 2002.
[9] S. Maikap, J.-H. Lee, R. Mahapatra, Samik Pal, Y.S. No, W.-K. Choi, S.K. Ray, and D.-Y. Kim, “Effects of interfacial NH3/N2O-plasma treatment on the structural and electrical properties of ultra-thin HfO2 gate dielectrics on p-Si substrates,” Solid-State Electron., vol. 49, p. 524, 2005.
[10] H. Kim, C. O. Chui, K. C. Saraswat, M.-H. Cho, and P. C. McIntyre, “Interfacial characteristics of HfO2 grown on nitrided Ge (100) substrates by atomic-layer deposition,” Appl. Phys. Lett., vol. 85, p. 2902, 2004.
[11] N. Lu, W. Bai, A. Ramirez, C. Mouli, A. Ritenour, M. L. Lee, D. Antoniadis, and D. L. Kwong, “Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO2 dielectric,” Appl. Phys. Lett., vol. 87, p. 051922, 2005.
[12] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces,” Appl. Phys. Lett., vol. 76, p. 2244, 2000.
[13] S. J. Whang, S. J. Lee, F. Gao, N. Wu, C. X. Zhu, L. J. Tang, L. S. Pan, and D. L. Kwong, “Germanium p- & n-MOSFETs fabricated with novel surface passivation (plasma-PH3 and AlN) and HfO2/TaN gate stack,” IEEE Int. Electron Device Meet. Tech. Dig., p. 307, 2004.
[14] H. Niimi and G. Lucovsky, “Monolayer-level controlled incorporation of nitrogen at Si–SiO2 interfaces using remote plasma processing,” J. Vac. Sci. Technol. A, vol. 17, p. 3185, 1999.
[15] T. Sugawara, Y. Oshima, R. Sreenivasan, and P. C. McIntyre, “Electrical properties of germanium/metal-oxide gate stacks with atomic layer deposition grown hafnium-dioxide and plasma-synthesized interface layers,” Appl. Phys. Lett., vol. 90, p. 112912, 2007.
[16] Y.-H. Jeong, S. Takagi, F. Arai, and T. Sugano, “Effects on InP surface trap states of in situ etching and phosphorus-nitride deposition,” J. Appl. Phys., vol. 62, p. 2370, 1987.
[17] F. Gao, S. J. Lee, R. Li, S. J. Whang, S. Balakumar, D. Z. Chi, C. C. Kean, S. Vicknesh, C. H. Tung, and D. L. Kwong, “GaAs p- and n-MOS Devices Integrated with Novel passivation (Plasma Nitridation and AlN-surface passivation) techniques and ALD-HfO2/TaN gate stack,” IEEE Int. Electron Device Meet. Tech. Dig., p. 833, 2006.

Chapter 4
[1] M. Passlack, R. Droopad, and G. Brammertz, “Suitability study of oxide/gallium
arsenide interfaces for MOSFET applications,” IEEE Trans. Electron Devices, vol. 57, p.2944, 2010.
[2] Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, and P. D. Ye, “High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al2O3, HfO2, HfAlO as gate dielectrics,” IEEE Int. Electron Device Meet. Tech. Dig., p. 637, 2007
[3] N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, and J. S. Harris, “InGaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer-deposition,” Appl. Phys. Lett., vol. 89, p. 163517-1, 2006.
[4] E. J. Kim, E. Chagarov, J. Cagnon, Y. Yuan, A. C. Kummel, P. M. Asbeck, S. Stemmer, K. C. Saraswat, and P. C. McIntyre, “Atomically abrupt and unpinned Al2O3/In0.53Ga0.47As interfaces: experiment and simulation,” J. Appl. Phys., vol. 106, p.124508-1, 2009.
[5] G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, Meuris, and Heyns, “Characteristics trapping lifetime and capacitance-volatage measurements of GaAs metal-oxide-semiconductor structures,” Appl. Phys. Lett., vol. 91, p. 133510-1, 2007.
[6] Y. Hwang, R. Engel-Herbert, N. G. Rudawski, and S. Stemmer, “Effect of postdeposition anneals on Fermi level response of HfO2/In0.53Ga0.47As gate stacks,” J. Appl. Phys., vol. 108, p.034111-1, 2010.
[7] E. H. Nicollian, and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology. New York: Wiley, 1982.
[8] W. Shockley, and W. T. Read, Jr., “Statistics of recombinations of holes and electrons,” Phys. Rev., vol. 87, p. 835, 1952.
[9] F. P. Heiman, and G. Warfield, “The effects of oxide traps on the MOS capacitance,” IEEE Trans. Electron Devices, vol. ED-12, p.167, 1965.
[10] Y. Yuan, L. Wang, B. Yu, B. Shih, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A Distributed Model for Border Traps in Al2O3 – InGaAs MOS Devices,” IEEE Electron Device Lett., vol. 32, p. 485, 2011.
[11] Y. Yuan, B. Yu, J. Ahn, P. C. McIntyre, P. M. Asbeck, M. J. W. Rodwell, and Y. Taur, “A distributed Bulk-Oxide Trap Model for Al2O3 InGaAs MOS Devices,” IEEE Trans. Electron Devices, vol. 59, p. 2100, 2012.
[12] H. Prier, “Contribution of surface states to MOS impedance,” Appl. Phys. Lett., vol. 10, p. 361, 1967.
[13] D. S. L. Mui, J. Reed, D. Biswas, and H. Morkoc, “A new circuit model for tunneling related trapping at insulator-semiconductor interfaces in accumulation,” J. Appl. Phys., vol. 72, p. 553, 1992.
[14] J. P. Campbell, J. Qin, K. P. Cheung, L. C. Yu, J. S. Suehel, A. Oates, and K. Sheng, “Random telegraph noise in highly scaled nMOSFETs,” in Proc. IEEE Int. Rel. Phys. Symp. Tech. Dig., p. 382, 2009.
[15] H. Reisinger, T. Grasser, W. Gustin, and C. Schlünder, “The statistical analysis of individual defects constituting NBTI and its implications for modeling DC- and AC-stress,” in Proc. IEEE Int. Rel. Phys. Symp. Tech. Dig., p. 7, 2010.
[16] T. Grasser, H. Reisinger, P.-J. Wagner, and B. Kaczer, “The time dependent defect spectroscopy for characterization of border traps in metal-oxide-semiconductor transistors,” Phys. Rev. B. vol. 82, p. 245318-1, 2010.
[17] D. Garetto, Y. M. Randriamihaja, A. Zaka, D. Rideau, A. Schmid, H. Jaouen, and Y. Leblebici, “Analysis of defect capture cross sections using non-radiative multiphonon-assisted trapping model,” Solid State Electron., vol. 71, p. 74, 2012.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊