跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林佩儀
論文名稱:量子點光源中精細結構匹裂與光學特性之研究
論文名稱(外文):Fine Structure Splitting and Optical Properties of Single Neutral Excitons in Quantum Dot Light Sources
指導教授:鄭舜仁鄭舜仁引用關係
指導教授(外文):Cheng, Sun-Jen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:80
中文關鍵詞:量子點精細匹裂光學異相性尺寸效應應力
外文關鍵詞:Quantum dotFine structure splittingoptic anisotropysize effectstress
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以理論方法討論尺寸效應下量子點的精細匹裂(fine structure splitting)與光學異相性(optical anisotropic)。文中討論兩種具代表性的量子點光源: InAs/GaAs 自組式(self-assembled)量子點,以及hierchical GaAs/AlGaAs 量子點。文中使用單能帶以及四能帶k.p 模型並搭配三維簡協振子(3-D parabolic model)模型分別計算激子(exciton)系統的電子與電動結構。光學偏振部分以費米黃金定律(Fermi’s Golden Rule)計算各方向之發光強度及異相性。文中討論的兩種量子點中,InAs/GaAs 自組式量子點因兩種材料晶格不匹配於量子點內部存在的應變效應可由解析方式得到量子點中心點的應變量;此應變解析值亦可與套裝軟體Comsol multiphysicsⓇ比較。除四能帶模型的數值模擬以外,文中亦以微擾方式簡化系統並得易分析的解析解。由解析解中可得量子點中的精細匹裂的消長乃由於長程作用力(long-range interaction)及短程作用力(short-range interaction)兩者的相互競爭引起。
除最基本的尺寸效應探討以外,量子點的精細匹裂與光學異相性亦可由外加應力調控。文中於GaAs塊材外加單軸應力(uni-axial stress),並探討塊材在應力下的能帶、光學偏振以及微觀尺度的Bloch function變化。對塊材在應力之下的變化有基本認知後,我們未來工作更可將應力作用延伸至量子點。

This thesis theoretically studies the size effects of quantum dots (QDs) on the fine structure properties as well the optical polarization. Known as representative excellent quantum light sources, two semiconductor QDs, InAs/GaAs self-assembled QDs and hierarchical GaAs/AlGaAs QDs are considered. Excitonic structures of the QDs are computed numerically by combining the four-band Luttinger-Kohn k?況’s model for valence hole and single-band model for conduction electron within the 3D-parabolic potential model of QD. Optical polarizations of the single excitons in the dots are calculated by using Fermi’s Golden rule. Initial strain in InAs/GaAs self-assembled QDs induced by lattice mismatch is formulated as a function of size analytically and numerically calculated using finite-element software package, Comsol multiphysicsR. Analytical results indicate that the energetic competition of the size-dependent short- and long-ranged e-h exchange interactions diminish the fine structure splitting of an elongated QD. Moreover, the electronic structures and optical polarization properties of GaAs bulk under stress control were studied theoretically, in which the corresponding microscopic Bloch wave functions were visualized under applied stress by using the Slater Orbital model.
Abstract III
Table of contents VI
Table of tables X
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 2
1.3 Contents 4
Chapter 2 Fundamental Theory 5
2.1 Theory for Exciton 5
2.2 Strain effects 21
Chapter 3 Size Effects 36
3.1 Hierarchical GaAs QDs 38
3.2 InAs/GaAs self-assembled QDs 43
Chapter 4 Strain effects on semiconductor bulk 49
4.1 Fundamental bulk theory 49
4.2 Numerical results of bulk with applied stress 52
References 62
Appendix I Rotation Matrix 64
Appendix II Reference frame transformation of kinetic part 66
Appendix III Reference frame transformation of strain part 73
Appendix IV Strain modification by six-band model 77
Parameters 80
1. M. Grundmann, O.Stier, and D. Bimberg, ” InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure”, Phys. Rev. B 52, 11969–11981 (1995).
2. S. Kumar, R. Trotta, E. Zallo, J. D. Plumhof, and P. Atkinson, “Strain-induced tuning of the emission wavelength of high quality GaAs/AlGaAs quantum dots in the spectral range of the 87Rb D2 lines”, Appl. Phys. Lett. 99, 161118 (2011).
3. R. Singh and G. Bester, ”Lower Bound for the Excitonic Fine Structure Splitting in Self-Assembled Quantum Dots”, Phys. Rev. Lett 104, 196803 (2010).
4. S. L. Chuang, “Physics of Photonic Devices”, Second Edition, Wiley (2008).
5. M. Gong, W. Zhang, G. C. Guo and L. He, “Exciton Polarization, Fine-Structure Splitting, and the Asymmetry of Quantum Dots under Uniaxial Stress”, Phys. Rev. Lett 106, 227401 (2011).
6. C. H. Lin, W. T. You, H. Y. Chou, S. J. Cheng, S. D. Lin, and W. H. Chang “Anticorrelation between the splitting and polarization of the exciton fine structure in single self-assembled InAs/GaAs quantum dots”, Phys. Rev. B 83, 075317 (2011).
7. J. F. NYE, M. A. and PH. D., “Physical Properties of Crystals”, 1st edition, Oxford: Clarendon Press (1957).
8. M. K. Kuo, T.R. Lin, B.T. Liao, and C.H. Yu, ”Strain effects on optical properties of pyramidal InAs/GaAs quantum dots” Physica E 26, 199-202 (2005).
9. S. J. Cheng, private communication, Department of Electrophysics, NCTU (2012).
10. A. V. Nenashev and A. V. Dvurechenskii, ”Strain distribution in quantum dot of arbitrary polyhedral shape: Analytical solution in closed form”, arXiv:0707.2183v2 (2009).
11. A. V. Nenashev and A. V. Dvurechenskii, ”Strain distribution in quantum dot of arbitrary polyhedral shape: Analytical solution”, J. Appl. Phys. 107, 064322 (2010).
12. C. H. Ku, “Finite difference method for calculation of electronic structure of semiconductor quantum dots”, MS thesis, Department of Electrophysics, NCTU (2011).
13. Y. Leger, L. Besombes, L. Maingault, and H. Mariette, “Valence-band mixing in neutral, charged, and Mn-doped self-assembled quantum dots”, Phys. Rev. B, 76, 045331 (2007).
14. T. Takagahara, “Theory of exciton doublet structures and polarization relaxation in single quantum dots”, Phys. Rev. B 62, 16840–16855 (2000).
15. M. Z. Maialle, E. A. de Andrada e Silva, and L. J. Sham “Exciton spin dynamics in quantum wells”, Phys. Rev. B 47, 15776 (1993).
16. E. Kadantsev and P. Hawrylak, ”Theory of exciton fine structure in semiconductor quantum dots: Quantum dot anisotropy and lateral electric field”, Phys. Rev. B 81, 045311 (2010).
17. R. Romestain and G. Fishman, “Excitonic wave function, correlation energy, exchange energy, and oscillator strength in a cubic quantum dot”, Phys. Rev. B 49, 1774 (1994).
18. Y. C. Chang, “Stark effects in optical anisotropies of self-assembled quantum dots”, MS thesis, Department of Electrophysics, NCTU (2011).
19. W. D. Sheng, S. J. Cheng, and P. Hawrylak , “Multiband theory of multi-exciton complexes in self-assembled quantum dots”, Phys. Rev. B 71, 035316 (2005).
20. E. Hecht, “Optics”, 4th edition, Pearson (2001).
21. R. W. Boyd, “Nonlinear Optics”, 3rd edition, Academic Press (2008).
22. J. Ma’rquez, L. Geelhaar, and K. Jacobi, “Atomically resolved structure of InAs quantum dots” Appl. Phys. Lett. 78, 2309 (2001).
23. J. Los and A. Fasolino, “Generalization of the k⋅p approach for strained layered semiconductor structures grown on high-index-planes”, Phys. Rev. B 53, 4630–4648 (1996).
24. New Semiconductor Materials. Characteristics and Properties, Loffe Physico-Techinical Institute, Russia (http://www.ioffe.ru/SVA/NSM/).
25. J. Deng, F. Ye, Q. Y. Long and C. W. Lung, “Reliability of measuring the roughness exponent in a small-length-scale regime”. Phys. Rev. B 59,8 (1999).
26. H. Y. Ramirez, C. H. Lin, C. C. Chao, Y. Hsu, W. T. You, S. Y. Huang, Y. T. Chen, H. C. Tseng, W. H. Chang, S. D. Lin, and S. J. Cheng, “Optical fine structures of highly quantized InGaAs/GaAs self-assembled quantum dots”, Phys. Rev. B 81,245324(2010).
27. H. Fu, L. W. Wang, and A. Zunger, “Excitonic exchange splitting in bulk semiconductors”, Phys. Rev. B 85, 5568(1999)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊