跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊政鴻
研究生(外文):Yang, Cheng-Hong
論文名稱:藉由光電容研究深層缺陷能階與砷化銦量子點之載子交互作用
論文名稱(外文):Carrier Interaction between InAs Quantum Dots and Deep Level Traps Investigated by Photo-capacitance
指導教授:陳振芳陳振芳引用關係
指導教授(外文):Chen, Jenn-Fang
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:151
中文關鍵詞:砷化鎵量子點光電容光電流深層缺陷載子交互作用
外文關鍵詞:InAs quantum dotphoto-capacitancephoto-currentdeep trapcarrier interaction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:157
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是藉由光性及電性的量測,包括光激發螢光頻譜(PL)、電容電壓(C-V)、導納頻譜(C-F &; G/f-f)、深層能階暫態頻譜儀(DLTS)的量測,來探討在InAs/InGaAs這種quantum dot-in-well (DWELL) 結構中,其量子能階,缺陷能階和電子放射機制做探討。樣品為完美InAs量子點成長2.2 ML(無缺陷)、InAs量子點成長2.2 ML(有缺陷)、應力鬆弛InAs量子點成長3.3 ML(有缺陷)。在厚度2.2 ML之InAs量子點樣品中導納頻譜量測分析,其量子點能帶結構受到應力影響而形成極薄的能障,使得量子點中的基態電子熱放射至第一激發態能階後穿隧至砷化鎵導帶,其放射時間常數低於微秒等級;而3.3 ML之InAs量子點因受到應力鬆弛導致產生兩群量子點可分為利用生成錯為排差來達到應力釋放的低能量量子點與藉由將銦原子往外擴散而使所承受應力減輕的高能量量子點。透過PL量測在110 K到160K之間PL積分強度增加現象,配合兩群量子點隨溫度變化的特性可知高能階量子點中的載子透過兩群量子點中的量子井傳輸至低能階的量子點中,導納頻譜量測分析顯示在78 K~140 K內發現載子躍遷速率有一轉折,可以證明是由載子轉移所致。
最後透過光激發下的電性量測觀察量子點樣品的內部性質。在不同的光能量激發下之光電容量測,其光電容變化來源分為量子點跟缺陷能階的交互作用及缺陷能階兩部分。當光激發能量低於1.3 eV時,量子點能階與缺陷能階中產生光電子與光電洞。光電子的放射速率達到微秒等以下,但光電洞的放射速率達到數秒等,導致量子點電容的平台抬升產生光電容變化。而這些光電容的變化可以觀察到量子點中電子填充效應以及電洞佔據在缺陷能階中產生的壓降所造成的電容電壓曲線之變化。當光激發能量大於1.3 eV時,砷化鎵中的深層缺陷開始吸收產生光電子與光電洞。光電子被放射至砷化鎵導帶上留下正電荷於深層缺陷能階,藉由量子點周圍空乏載子所形成的能障擋住了深層缺陷所放射的光電子,使得此區如山谷狀的能帶結構,隨著光電子濃度增加造成一個壓降於此區,在定電壓下,量子點能帶結構必須往上提產生正向電壓抵銷來平衡電壓,而此物理模型也利用理論模擬方式得到驗證。比較氮砷化鎵量子井樣品,利用其量子井無電洞侷限的特性以及將此樣品熱退火處理後證明此深層能階確實是造成大量的光電容變化來源。

The on optical and electrical properties of post-growth InAs /InGaAs dot-in-well structures grown by molecular beam epitaxy on GaAs(100) were studied by current-voltage measurement (I-V), capacitance-voltage (C-V) profiling, bias-dependent deep level transient spectroscopy (DLTS) and photoluminescence (PL) measurements. For a perfect 2.2 ML InAs QD sample (SH332), C-V profile shows two accumulation peaks at the 77 K. We determine activivation energy of 57 meV according to the PL spectra and admittance spectroscopy measurement. Quanlity of this quantum structure is good since no defects are observed by DLTS. Two quantum peaks of C-V profile are probably originated from the ground and the first excited states of QD, respectively. The electrons in the ground are excited to the excited state of the QD then tunnel out of the potential well. This emission time of the electrons from the ground to excited state is about 106 sec at 77 K. For a 2.2 ML InAs QD sample (TR502), the emission time of the electrons is also the same with perfect InAs QD sample. However, the top GaAs layer has defect with concentration of about 1015 cm3 by low temperature grown.
As the InAs deposition exceeds of 3 ML, strain in the InAs QD is relaxed, and the bimodal QDs strat to form at the same time. The existence of two types of QDs in the strain-realxed QDs system: a low energy QD family whose strain is relaxed by the generation of misfit dislocations, and a high energy QD family whose strain is mainly relieved by indium outdiffusion. The effect of interdot carrier transfer on temperature dependent PL is investigated. The integrated-PL intensity of low energy QDs shows two regimes (i) an unusual increment begins about 110 K (ii) and then drops rapidly above 160 K. The full width half maximum (FWHM) of the high energy QDs first decreases about 110 K and reaches a minimum value at about 200 K. The phenomenon can be attributed to that the carrier transfers between the bimodal QDs from the high to the low energy QDs through the InGaAs quantum well. Accordingly the carrier emission time determined by G-F measurement exhibits a V-shape versus the similar temperature dependence (78 K~140 K) due to carrier transfer between bimodal QDs in 3.3 ML sample. Based on G-F data analysis, the mechanism of carrier emission in a large electric field is likely phonon-assisted tunneling when temperature increased.
Furthermore, we investigate the carrier interaction between QD and defect states by electrical measurements under illumination. Under the illumination less than 1.3 eV, the photo-capacitance produces origins that the photo-holes trapping into the deep defect level and the photo-electrons fill up at the shallow energy level. The enhance photo-capacitance casues by the trapped holes in the deep defect level and emitted electron from the QD state to bottom GaAs conduction band. Under the illumination of 1.3 eV, the large capacitance produces, suggesting an existence of potential drop at the vally of top GaAs conduction band. At the constant bias, trapped holes and emitted electrons into the valley would produce a potential drop at the valley region near QD. In order to the applied bias balance, the Fermi-level at QD region must drop to pin the QD energy level. Hence, the QD plateau can be found at the small reverse bias under the illumination of 1.3 eV. These photo-capacitance phemonenons also can be verified by theory simulation. Compairsion with InAs QD and GaAsN QW samples, photo-holes trap into deep defect level indeed due to the property of no comfinement in hole states of the GaAsN QW. After thermal annealing 700 ℃, PL spectra show the transitions of QW state enhance and deep defect level to electron state of QW lower and photo-capacitance decreases, suggesting deep defect removed by thermal annealing. Therefore, the sourse of the photo-capacitance is caused by photo-carrier interation between the quantum state and deep defect level.

中文摘要………………………………………………………..…………….......…….…..i
英文摘要……………………………………………………….…....……….....................iii
致謝…………………………………………………………………….……......………....v
目錄………………………………………………………….....……………...…..……...vii
圖表目錄……………………………………………………………....………...……........x
第一章 序論…………………………………………………………....……………….1
1-1 前言…………………………………………………………………………………...1
1-2 量子結構簡介與特性……………………...……………............................……..…..1
1-3 InAs/ (In)GaAs量子點材料簡介………………………………….………..…….......2
1-4 Dot-in-Well (DWELL)結構簡介…………………………..…..…………..……........3
1-5 量子結構應用之文獻探討…………………................…………………....….…......3
1-6 研究動機…………………………………………………………………...….….......5
1-7 論文架構………………………………………………………………………….......7
參考文獻………………………………………………………………………….............11
第二章 樣品製備與量測系統簡介………………………………………………..….15
2-1 樣品製備…………………………………………………………............................15
2-1-1 量子點樣品成長………………………………………..………………..……15
2-1-2 電極製作…………………………………………………………………..…..16
2-2 量測系統簡介…………………………………………………………….……...…17
2-2-1 光激發螢光量測系統(PL) …………………………………………………....17
2-2-2 電流電壓量測(I-V) ………………………………………………………...…19
2-2-3 電容電壓量測(C-V) ………………………………………………………..…20
2-2-4 導納頻譜量測(C-F &; G-F) …………………………………………..….……20
2-2-5 深層能階暫態頻譜量測(DLTS) …………………………………………...…21
2-2-6 暫態電容量測(C-t) ...…………………………..................………………...…21
2-2-7 光激發電性量測系統…………………………..................………………..…23
參考文獻………………………………………………………………………….............28
第三章 InAs/ GaAs量子點的光學特性………............................................................29
3-1 完美InAs/GaAs量子點(SH332)光性分析……………...…...…………………….29
3-2 InAs/GaAs量子點(TR502)光性分析……………………...…..........…………….22
3-3 應力鬆弛之InAs/GaAs量子點(MA043)光性分析……………………………….30
參考文獻………………………………………………………………………….............38
第四章 InAs/ GaAs量子點的電學特性…....................................................................39
4-1 完美InAs/GaAs量子點(SH332)電性分析………………………….......................39
4-2 InAs/GaAs量子點(TR502)電性分析……………..............................................….40
4-3 應力鬆弛之InAs/GaAs量子點(MA043)電性分析…………..………………..…..45
4-4 總結…….................................................................................................................…48
參考文獻………………………………………………………………………….............66
第五章 光激發電性理論與量測…..................................................................…….....68
5-1 量子點電容電壓(C-V)模擬…………………………….…........................………68
5-2 高溫下的量子點電容電壓(C-V)模擬與實驗比較.……………………………....73
5-3 光激發電性量測原理………………………………………………………………76
5-4 不同照光能量下的量子點電流電壓(I-V)實驗分析…………………..…………78
5-5 不同照光能量下的量子點電容電壓(C-V)實驗分析……………….……………79
5-6 總結........................................................................................................................…81
參考文獻………………………………………………………………………….............99
第六章 InAs(GaAsN)/GaAs量子點(井)結構與GaAs自身缺陷能階照光特性影響.................................................................................................................100
6-1 光電容在量子點中產生機制與理論架構..............................................................100
6-2 不同照光能量(能量< 1.3 eV)激發量子點電子能階之電容電壓(C-V)實驗分析..........................................................................................................................…107
6-3 不同量子點電子能階之樣品照光下電容電壓(C-V)實驗分析...........................111
6-4 不同照光能量(能量> 1.3 eV)激發GaAs缺陷之電容電壓(C-V)實驗分析.......113
6-5 EL2缺陷能階電子回填...........................................................................................115
6-6 總結......................................................................................................................…117
參考文獻…………………………………………………………………………...........148
第七章 結論.................................................................................................................149

第一章
[1] P. Hawrylak, Phys. Rev. B 60, 5597 (1999).
[2] U. Banin, Y. Cao, D. Katz, O. Millo, Nature 400, 542 (1999).
[3] T.-R. Lin, M.-K. Kuo, B.-T. Liao and K.-P. Hung, Bulletin of the College of Engineering, N.T.U. 91, 3 (2004).
[4] M. V. Maximov, B. V. Volovik, D. A. Bedarev, A. Yu. Egorov, A. E. Zhukov, A. R. Kovsh, N. A. Bert, V. M. Ustinov, P. S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov, D. Bimberg, I. P. Soshnikov, and P.Werner, Appl. Phys. Lett. 75, 2347 (1999).
[5] D. L. Huffaker, G. Park, Z. Zou, O.B Shchekin, and D.G. Deppe, Appl. Phys. Lett. 73, 2564 (1998).
[6] Y. Arakawa and K. Sakaki, Appl. Phys. Lett. 40, 939 (1982).
[7] H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus, and P. M. Petroff, Phys. Rev. Lett. 73, 2252 (1994).
[8] D. L. Huffaker and D. G. Deppe, Appl. Phys. Lett. 73, 520 (1998).
[9] National Science and Technology Program for Nanoscience and Nanotechnology, research plan, (2004).
[10] Seongsin M. Kim, Proc. of SPIE, 4999, 423 (2003).
[11] A. Mews, A. V. Kadavanich, U. Banin, and A. P. Alivisatos, Phys. Rev. B 53, R13242 (1996).
[12] M. E. Rubin, G. Medeiros-Ribeiro, J. J. O’Shea, M. A. Chin, E. Y. Lee, P. M. Petroff, and V. Narayanamurti, Phys. Rev. Lett. 77, 5268 (1996).
[13] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Phys. Rev. Lett. 60, 535 (1988).
[14] Gautam Das and J. W. Y. Lit, IEEE Photon. Tech. Lett., 13, 606 (2002).
[15] S. Maimon, E. Finkman, and G. Bahir, Appl. Phys. Lett. 73, 2003 (1998).
[16] K. Shibata and K. Hirakawa, Appl. Phys. Lett. 93, 062101 (2008).
[17] J. J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Bo¨hm, and G. Abstreiter, Appl. Phys. Lett. 73, 2618 (1998).
[18] P. Alivisatos, Nature Biotechnology 22, 47 (2004).
[19] D. Bimberg, M. Grundmann, and N. N. Ledentsov, “Quantum Dot Heterostructures,” Wiley, (1999).
[20] F. C. Frank, and J. H. van der Merwe, Proc. Roy. Soc. London A, 198, 205 (1949).
[21] M. Volmer, and A. Weber, Z. Phys. Chem. 119, 277 (1926).
[22] I. N. Stranski, and L. Von Krastanov, Akad. Wiss Lit. Main Math. Natur. K1. Iib, 146, 797 (1939).
[23] F. Heinrichsdorff, A. Krost, D. Bimberg, A. O. Kosogov and P. Werner, Appl. Surf. Scie, 123, 725 (1998).
[24] V. M. Ustinov,N. A. Maleev,A. E. Zhukov, A.R. Kovsh, A. Yu. Egorov, A. V. Lunev, B. V. Volovil, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P.S. Kop’ev, Zh. I. Alferov, N. N. Ledentsov and D. Bimberg, Appl. Phys. Lett. 74, 2815 (1999).
[25] M. V. Maximov, A. F. Tsatsul'nikov, B. V. Volovik, D. A. Bedarev, A. E. Zhukov, A. R. Kovsh, N. A. Maleev, V. M. Ustinov, P. S. Kop'ev, Zh. I. Alferov, R. Heitz, N. N. Ledentsov, and D. Bimberg, Physica E 7, 326 (2000).
[26] D. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. Deppe, IEEE J. Select. Topics Quantum Electron. 6, 452 (2000).
[27] S. Kim, H. Mohseni, M. Erdtmann, E. Michel, C. Jelen, and M. Razeghi, Appl. Phys. Lett. 73, 963 (1998).
[28] L. Vegard, Z. Phys. 5, 17 (1921).
[29] L. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B 54, 17568 (1996).
[30] T. P. O’Regan, P. K. Hurley, B. Sorée, and M. V. Fischetti, Appl. Phys. Lett. 96, 213514 (2010).
[31] K.-W. Lee, P.-W. Sze, Y.-J. Lin, N.-Y. Yang, M.-P. Houng, and Y.-H. Wang, IEEE Electron Devices Lett. 26, 864 (2005).
[32] Y. Yuan, L. Wang, B. Yu, B. Shin, J. Ahn, P. C. McIntyre, IEEE Electron Devices Lett. 32, 485 (2011).
[33] H. C. Lin, G. Brammertz, K. Martens, G. de Valicourt, L. Negre, Appl. Phys. Lett. 94, 153508 (2009).
[34] Kuan-Wei Lee, Kai-Lin Lee, Xian-Zheng Lin, Chao-Hsien Tu, and Yeong-Her Wang, IEEE Tran. Electron Devices 54, 418 (2007).
[35] B. Marquardt, A. Beckel, A. Lorke, A. D. Wieck, D. Reuter, Appl. Phys. Lett. 99, 223510 (2011).
[36] M. Russ, C. Meier, B. Marquardt, A. Lorke, D. Reuter and A. D. Wieck, Phase Transitions 79, 765 (2006).
[37] B. Marquardt, M. Geller, A. Lorke, D. Reuter, and A. D. Wieck, Appl. Phys. Lett. 95, 022113 (2009).
[38] M. Ruß, C. Meier, A. Lorke, D. Reuter, and A. D. Wieck, Phys. Rev. B 73. 115334 (2006).
[39] A. Rack, R. Wetzler, A. Wacker, and E. Scho¨ll, Phys. Rev. B 66. 165429 (2002).
[40] E S Kannan, Gil-Ho Kim, and D A Ritchie, J. Phys. D: Appl. Phys. 43, 225101 (2010).
[41] Kai Cui, Wenquan Ma, Yanhua Zhang, Jianliang Huang, Yang Wei, Appl. Phys. Lett. 99, 023502 (2011).
[42] G. Yusa and H. Sakaki, Appl. Phys. Lett. 70, 345 (1997).
[43] P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, Phys. Rev. B 64 235317 (2001).
[44] M. Yamaguchi, et al., Photovoltaic Specilaists Cof. (PVSC), 2009 34th, IEEE
[45] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, abd S. Ohoya, J. Cryst. Growth 227, 481 (2001).
[46] J. Wu, W. W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[47] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Stat. Sol. B 229, R1 (2002).
[48] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
[49] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, Phys. Stat. Sol. B 233, R4 (2002).
[50] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, F. Bechstedt, A. V. Mudryi, and E. E. Haller, Phys. Stat. Sol. B 233, R10 (2002).
[51] Q. Guo, and A. Yoshida, Jpn. J. Appl. Phys. 33, 2454 (1994).
[52] L. F. Jiang, W. Z. Shen, H. F. Yang, H. Ogawa, and Q. X. Guo, Appl. Phys. A 78, 89 (2004).

第二章
[1] D.L. Losee, J. Appl. Phys. 46, 2204 (1975).
[2] G. Vicent, D. Bois, P. Pinard, J. Appl. Phys. 46, 5173 (1975).
[3] L. Vegard, Z. Phys. 5, 17 (1921).
[4] L. Bellaiche, S.-H. Wei, and A. Zunger, Phys. Rev. B 54, 17568 (1996).
[5] 張佑誠,交通大學電子物理研究所碩士論文,“應力鬆弛對InAs/InGaAs量子點特性影響“(2010).

第三章
[1] Y. P. Varshni, Physica 34, 149 (1967).
[2] 陳育志,交通大學電子物理研究所碩士論文,“摻雜不同氮含量的InAs/InGaAs量子點與不同長晶速率的InGaAsN單一量子井之電性研究“, (2003)
[3] 陳宜屏,交通大學電子物理研究所碩士論文,“氮含量與砷化銦厚度對砷化銦/砷化鎵量子點光性影響“, (2003)
[4] 汪炎宗,交通大學電子物理研究所碩士論文,“InAs量子點應力鬆弛所引發缺陷對量子躍遷機制“, (2008)
[5] 徐榕鎂,交通大學電子物理研究所碩士論文,“應力鬆弛引發之缺陷InAs/InGaAs量子躍遷機制“, (2003)

第四章
[1] P. Krispin, J.-L. Lazzari, and H. Kostial, J. Appl. Phys. 84, 6135 (1988).
[2] W.-H. Chang, W. Y. Chen, M. C. Cheng, C. Y. Lai, and T. M. Hsu, Phys. Rev. B 64, 125315 (2001).
[3] G. Vicent, D. Bois, and P. Pinard, J. Appl. Phys. 46, 5173 (1975).
[4] M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).
[5] 陳宜屏,交通大學電子物理研究所碩士論文,“氮含量與砷化銦厚度對砷化銦/砷化鎵量子點光性影響“, (2003).
[6] C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, Phys. Rev. B 60, 14265 (1995).
[7] J. Ibanez, R. Leon, and D. T. Vu, Appl. Phys. Lett. 79, 2013 (2001).
[8] P. N. Brounlov, A. Polimeni, S. T. Stoddart, M. Henini, L. Eaves, and P. C. Main, Appl. Phys. Lett. 73, 1092 (1998).
[9] C. M. A. Kapteyn, M. Lion, R. Heitz, and D. Bimberg, Appl. Phys. Lett. 76, 1573 (2000).
[10] 陳育志,交通大學電子物理研究所碩士論文,“摻雜不同氮含量的InAs/InGaAs量子點與不同長晶速率的InGaAsN單一量子井之電性研究“, (2003).
[11] C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N. D. Zakharov, and D. Bimberg, Phys. Rev. B 60, 14265 (1999).
[12] G. M. Martin, A. Mitonneau and A. Mircea, Electronics Letters 13, 191 (1977).
[13] A. C. Irvine and D. W. Palmer, Physical Review Letters 68, 2168 (1992).
[14] N. C. Chen, P. Y. Wang, and J. F. Chen, J. Appl. Phys. 83, 1403 (1998).
[15] Mikhail V. Maximov, Igor V. Kochnev, Yuri M. Shernyakov, Sergei V. Zaitsev, Nikita Yu. Gordeev, Andrew F. Tsatsul'nikov,Alexey V. Sakharov, Igor L. Krestnikov, Petr S. Kop'ev, Zhores I. Alferov, Nikolai N. Ledentsov, Dieter Bimberg, Alexander O. Kosogov, Peter Werner and Ulrich Gösele, Jpn J. Appl. Phys. 36, 4221 (1997).
[16] Ming-Chin Chen, Hao-Hsiung Lin, and Chih-Wei Shie, J. Appl. Phys. 83, 3061 (1997).
[17] M. O. Manasreh, D. C. Look, K. R. Evans and C. E. Stutz, Phys. Rev. B 41, 10272 (1990).
[18] P. Leyral, G. Vincent, A. Nouailhat, G. Guillot, Solid State Comm. 42, 67 (1982).
[19] T. Wosinski, Appl. Phys. A 36, 213 (1985).
[20] 林妍君, 交通大學電子物理研究所碩士論文, ” 應力誘發之雙模態InAs/ InGaAs量子點特性” (2011).
[21] 張佑誠, 交通大學電子物理研究所碩士論文, ”應力鬆弛對InAs/InGaAs量子點” (2010).
[22] 傅昱翔, 交通大學電子物理研究所碩士論文, ” InAs量子點中缺陷效應影響下之量子躍遷機制” (2009).
[23] V. Ciulin, S. G. Carter, M. S. SherwA, Huntington, and L. A. Coldren, Phys. Rev. B 70, 115312 (2004).

第五章
[1] P. Bhattacharya: Semiconductor Optoelectronic Devices (2nd Prentice Hall New Jersey 1994).
[2] D. K. Schroder: Semiconductor Material and Device Characterization (Wiley, New York, 2006).
[3] Shu-Shen Li and Jian-Bai Xia, Journal of Applied Physics 88, 7171 (2000).
[4] E. E. Mendez, G. Bastard, L. L. Chang, L. Esaki, H. Morkoc, and R. Fischer, Phys. Rev. B 26, 7101 (1982).
[5] C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P. N. Brunkov, Appl. Phys. Lett. 76, 1573 (2000).
[6] H. Pettersson, L. Baath, N. Carlsson, W. seifert, and L.Samuekson, Phys. Rev. B 65, 073304 (2002)
[7] A. F. G. Monte and Fanyao Qu, Journal of Applied Physics 109, 053722 (2011).
[8] W.-H. Chang, T. M. Hsu, C. C. Huang, S. L. Hsu, C. Y. Lai, N. T. Yeh, T. E. Nee, and J.-I. Chyi, Phys. Rev. B 62, 6959 (2000).
[9] M. Skowronski, J. Lagowski, and H. C. Gatos, Journal of Applied Physics 59, 2451 (1986).
[10] S. Dhar, N. Halder, J. Kumar, and B. M. Arora, Appl. Phys. Lett. 85, 964 (2004).
[11] S. Dhar, N. Halder, A. Mondal, B. Bansal, and B. M. Arora, Semicond. Sci. Technol. 20, 1168 (2005).
[12] S. Dhar, N. Halder, and A. Mondal, Thin Solid Films 515, 4427 (2007).
[13] K. Mallik and S. Dhar, Phys. Status Solidi B 184, 393 (1994).
[14] D. V. Lang, and R. A. Logan, J. Appl. Phys. 47, 1533 (1976).

第六章
[1] E. E. Mendez, G. Bastard, L. L. Chang, L. Esaki, H. Morkoc, and R. Fischer, Phys. Rev. B 26, 7101 (1982).
[2] P. Bhattacharya: Semiconductor Optoelectronic Devices (2nd Prentice Hall New Jersey 1994).
[3] Shu-Shen Li and Jian-Bai Xia, Journal of Applied Physics 88, 7171 (2000)
[4] D. K. Schroder: Semiconductor Material and Device Characterization (Wiley, New York, 2006).
[5] P. Leyral, G. Vincent, A. Nouailhat, G. Guillot, Solid State Communications 42, 67 (1982).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊