跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:7358:9a99:61b8:7c06) 您好!臺灣時間:2025/01/19 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周育興
研究生(外文):Chou, Yu-Hsing
論文名稱:記憶型多重存取萊斯衰減通道之衰減數
論文名稱(外文):The Fading Number of Multiple-Access Rician Fading Channel with Memory
指導教授:莫詩台方
指導教授(外文):Moser, Stefan M.
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:53
中文關鍵詞:衰減數多重存取通道萊斯衰減記憶性消息理論
外文關鍵詞:Fading NumberMultiple-Access ChannelRician FadingMemoryInformation Theorey
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們分析記憶型萊斯衰減多重存取通道的總通道容量。在此通道中,衰減程序為高斯分佈並且有一個可目視的路徑成分,而且,有一個以上的使用者在同一時間裡傳送資料。為了簡化我們的分析,我們只考慮單傳送天線單接收天線的情況,也就是說,所有傳送端的使用者和接收端都僅使用單一天線。
在衰減通道容量的分析中,我們還不知道通道容量的精準表示式。我們使用一種稱作漸進分析的方法,在極限當可用的功率趨近無限大時得到通道容量。它顯示通道總容量在高訊號與雜訊比時會以雙指數成長達到無限大。而在高訊號與雜訊比的展開式中,第二項是一個叫做衰減數的常數。
在我們的研究中,我們找到一個單傳送天線單接收天線,m個使用者,一般記憶型萊斯衰減多重存取通道衰減數的上界。和其自然的下界-單使用者,單傳送天線單接收天線通道的衰減數結合後,我們得到精確的單傳送天線單接收天線,m個使用者,一般記憶型萊斯衰減多重存取通道衰減數。為了達到這個衰減數,我們必須停止比較差的使用者們傳送,並且讓最好的使用者們用分享時間的方式傳送。
In this thesis we analyze the sum-rate capacity of the Rician fading multiple-access channel (MAC) with memory. The fading process of the channel is Gaussian in addition to a line-of-sight component. Moreover, there are more than one user sending data at the same
time. To simplify our analysis, we consider the single-input single-output (SISO) case, i.e., all the transmitters and the receiver use one antenna.
In the analysis of the fading channel capacity, the exact expression of the capacity is not yet known. A way called asymptotic analysis is used to derive the channel capacity in the limit when the available power tends to infinity. It is shown that at high signal-to-noise ratio (SNR), the sum-rate capacity grows to infinity doublelogarithmically. The second term in the high-SNR expansion is a constant called fading number.
In our work, we derive an upper bound on the fading number of the general m-user SISO Rician fading MAC with memory. Combining the natural lower bound on the fading number of the single-user SISO channel, we then obtain the exact fading number of the general m-user SISO Rician fading MAC with memory. To achieve the fading number, we
have to switch off the worse users and allow the best users communicate by time-sharing.
List of Figures VII
1 Introduction 1
2 Channel Model 4
2.1 The m-User SISO Rician Fading MAC with Memory 4
2.2 The Simplified Channel Model 7
3 Mathematical Preliminaries 8
3.1 The Channel Capacity 8
3.2 Escaping to Infinity 9
3.3 Stationarity 10
3.4 The Fading Number 12
4 Previous Results 14
4.1 Natural Upper and Lower Bounds 14
4.2 An Upper Bound of Memoryless MAC 15
4.3 Two Equalities for the SISO Rician Fading MAC 16
5 Main Results 17
5.1 An Upper Bound on Fading Number of the m-User SISO Rician Fading MAC with Memory 17
5.2 The Two-User Fading Number with Memory 18
5.3 The m-User Fading Number with Memory 18
6 Derivation of Results 20
6.1 Derivation of Proposition 5.1 20
6.2 Derivation of Theorem 5.2 28
6.3 Derivation of Theorem 5.3 36
7 Discussion and Conclusion 44
A Derivation of Lemma 4.2 46
B Derivation of Lemma 4.3 48
Bibliography 52
[1] Roger A. Horn and Charles R. Johnson, Matrix Analysis. Cambridge: Cambridge University Press, 1985.
[2] Amos Lapidoth and Stefan M. Moser, “The expected logarithm of a noncentral chisquare random variable,” website. [Online]. Available: http://moser.cm.nctu.edu.tw/explog.html
[3] Amos Lapidoth and Stefan M. Moser, “Capacity bounds via duality with applications to multiple-antenna systems on flat fading channels,” IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2426–2467, October 2003.
[4] Gu-Rong Lin, “Capacity analysis of multiple-access Rician fading channel,” Master’s thesis, Information Theory Lab, Department of Communication Engineering, National Chiao Tung University (NCTU), Hsinchu, Taiwan, June 2009, supervised by Prof. Dr. Stefan M. Moser. [Online]. Available: http://moser.cm.nctu.edu.tw/publications.html
[5] Gu-Rong Lin and Stefan M. Moser, “The fading number of a Multiple-access Rician fading channel,” IEEE Transactions on Information Theory, vol. 57, no. 8, pp. 4983–4991, August 2011.
[6] Stefan M. Moser, Duality-Based Bounds on Channel Capacity, ser. ETH Series in Information Theory and its Applications. Konstanz: Hartung-Gorre Verlag, January 2005, vol. 1, ISBN 3–89649–956–4, edited by Amos Lapidoth. [Online]. Available: http://moser.cm.nctu.edu.tw/publications.html
[7] Stefan M. Moser, “Capacity analysis of multiple-access OFDM channels,” Department of Communication Engineering, National Chiao Tung University (NCTU), Zhudong, Taiwan, final report of project 4G Wireless Access Technology G1-95003, from January 1, to December 31, 2006, funded by Industrial Technology Research Institute (ITRI).
[8] StefanM.Moser, “The fading number of multiple-input multiple-output fading channels with memory,” IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2716–2755, June 2009.
[9] Mohsen Pourahmadi, Foundations of Time Series Analysis and Prediction Theory. New York: John Wiley & Sons, 2001.
[10] Hilary A. Priestley, Introduction to Integration. Oxford: Oxford University Press, 1997.
[11] Vignesh Sethuraman, Ligong Wang, Bruce Hajek, and Amos Lapidoth, “Low-snr capacity of noncoherent fading channels,” IEEE Transactions on Information Theory, vol. 55, no. 4, pp. 1555–1574, April 2009.
[12] Claude E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948.
[13] A. M. Yaglom, An Introduction to the Theory of Stationary Random Functions, Richard A. Silverman, Ed. Upper Saddle River, NJ: Prentice Hall, 1962.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top