跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 07:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳燦杰
研究生(外文):Chen, Tsan-Jieh
論文名稱:適用於癲癇偵測之高功率效益生理訊號處理系統晶片之設計與實現
論文名稱(外文):The Design and Implementation of a Power-Efficient Bio-Signal Processing System-on-Chip for Epileptic Seizure Detection
指導教授:闕河鳴闕河鳴引用關係
指導教授(外文):Chiueh, Herming
學位類別:博士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:95
中文關鍵詞:癲癇癲癇發作偵測閉迴路系統晶片精簡指令集
外文關鍵詞:Epilepsyepileptic seizure detectionclosed-loopsystem-on-chipRISC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:564
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,積體電路在現今的個人醫療應用中扮演著重要的角色。這些醫療裝置通常由電池供電,因此,功率消耗的限制帶來訊號擷取及處理的極大挑戰。其中一新興的生醫應用為癲癇發作控制。癲癇為目前常見的神經系統疾病之一,全球約有1%的人患有癲癇。其中,有一大部分的患者無法有效地使用現今的治療方法抑制。可植入式閉迴路神經刺激是一個創新且有效的癲癇抑制方法,而一個即時癲癇發作偵測器是一個閉迴路癲癇控制器的重要核心。在本篇論文中,許多從軟體至硬體層面的低功耗高效能技術被用來做為即時高功率效益癲癇偵測。為展示所提出的構想,三顆晶片被設計實現,並且使用患有自發型失神性癲癇的大鼠為動物模型,以驗證長時間連續的偵測效能。
在第一顆晶片中,一個基於32位元精簡指令集架構的生醫訊號處理核心被實現,以達到低功耗且連續即時處理能力。所提出的生醫訊號處理核心包含了5級整數管線、32位元乘法累加器及一個32位元計時器。此核心所擁有的高效能訊號處理及即時排程功能,可用在許多生醫應用上。原本的浮點癲癇偵測演算法被近似成整數運算,且重新排程後以獲得短的計算延遲。此高效能的生醫訊號處理核心被實現在0.18微米互補金屬氧化物半導體製程,以驗證功能及運算能力。根據量測結果顯示,該處理核心與先前基於增強型8051微控制器的雛型系統相比,可降低超過90%的功率消耗。
第二顆晶片中,提出一個基於第一顆晶片所設計的高功率效益生理訊號處理器,以用於多樣的生理訊號。在這顆處理器中,內嵌上萬位元組的記憶體以用來有效率的執行程式。多模式類比數位轉換器也被整合至晶片中以擷取生理訊號。為了系統的擴充性,許多串列及並列的介面裝置也被整合至處理器中。藉由指令層集的程式碼優化,大幅改善效能。電壓頻率縮放及時鐘閘控技巧也被應用來降低動態功率消耗。此生醫訊號處理器被實現在0.18微米互補金屬氧化物半導體製程。根據量測結果顯示,該處理核心在即時癲癇偵測模式下,僅消耗百微瓦。此一高度整合、高功率效益的生理訊號處理器可廣泛應用於可攜型醫療裝置。
最後一顆晶片中,提出一高功率效益的癲癇偵測系統晶片。一個具有直接記憶體存取的快速傅利葉轉換加速器及亂度編碼加速器被設計,並與第二顆晶片電路整合,提升癲癇偵測運算效能,進而降低動態功率消耗。訊號擷取的緩衝空間及資料控制單元被提出,以減少在訊號擷取時程式切換的時間消耗。此一高功率效益的癲癇偵測系統晶片被實現在0.18微米互補金屬氧化物半導體製程。根據模擬結果顯示,所實現之癲癇偵測系統晶片,在進行即時癲癇偵測情境下,僅消耗數十微瓦。此一極低功耗的系統晶片讓未來植入式閉迴路癲癇抑制可行。
結合有效率的硬體架構及軟體優化,該平台的即時處理能力、彈性、可移植性及多樣性及其設計方法不僅可用在閉迴路癲癇控制器,還可應用在許多生醫植入式裝置。

In recent years, integrated circuits play an important role in today’s personal medical applications. These medical devices are usually battery-powered and their limited power budget imposes design challenges on signal acquisition and processing. Epileptic seizure control is one of the emerging applications. In this application, closed-loop neurostimulation is the most important method for seizure control devices. A real-time seizure detector is the kernel of a closed-loop seizure controller. In this dissertation, several low-power high-performance techniques from software to hardware level are applied for real-time power-efficient seizure detection. To demonstrate the proposed ideas, three works are designed and implemented. Long-Evans rats with spontaneous absence seizures are used as animal models for long-term continuous verification.
In the first work, a bio-signal processor (BSP) core based on 32-bit reduced instruction set computer (RISC) architecture for seizure detection is implemented to achieve low-power consumption and continuous real-time processing. The proposed BSP core consists of 5-stage integer pipeline, 32×32 multiply-accumulator (MAC) unit, and a 32-bit tick timer. These features can enable high-performance signal processing and task scheduling for many biomedical applications. The floating-point seizure detection algorithm is approximated and rescheduled for short latency. The high-performance BSP core is implemented in 0.18 ?慆 complementary-metal-oxide semiconductor (CMOS) technology to verify functionality and capability. The measurement results show that the implemented processor can reduce over 90% power consumption compared with our previous prototype, which is implemented on an enhanced 8051 microcontroller.
In the second work, a power-efficient BSP based on the first work is proposed to utilize for diverse physiological signals. Tens of kilobytes memory is embedded for efficient program execution in the proposed processor. The multi-mode analog-to-digital converter (ADC) is also integrated for physiological signals acquisition. Several serial and parallel ports are integrated with RISC processor for system expansion. Significant performance improvement is achieved through instruction optimization. Voltage and frequency scaling as well as clock gating are applied to reduce dynamic power on this work. The proposed BSP is implemented in 0.18 ?慆 CMOS technology. The measurement results show that the BSP consumes hundreds of microwatts to perform real-time seizure detection. The highly integrated and power-efficient BSP can be applied for excessive portable medical devices.
The last work presents a power-efficient seizure detection system-on-chip (SoC). The FFT and entropy coding engines with direct memory access (DMA) feature are designed to reduce dynamic power through high-performance computation. The sample buffer and data control unit for signal acquisition is proposed to reduce context switching overhead. The seizure detection SoC is implemented in 0.18 ?慆 CMOS technology. The simulation results show that the implemented SoC consumes tens of microwatts to perform real-time seizure detection. The ultra-low power consumption of the proposed SoC enables implantable closed-loop seizure suppression in the future.
Combining with efficient hardware architecture and software optimization, the real-time processing capability, design flexibility, portability, and versatility of the proposed platform and its design methodology can be applied on closed-loop seizure controller and many biomedical implants.

摘要 ii
Abstract iv
Acknowledgements vi
Contents vii
List of Tables ix
List of Figures xi
Chapter 1 Introduction 1
1.1 Current Status on Biomedical Devices 1
1.2 Selection of Processing Platform 5
1.3 Low Power Techniques on Circuit Implementation 11
1.4 Closed-Loop Seizure Control System 16
Chapter 2 Motivation and Goals 21
Chapter 3 Hardware Design 25
3.1 BSP Core for Seizure Detection 25
3.1.1 The Microarchitecture of Processor Core 25
3.1.2 Implementation Results 26
3.2 Power-Efficient Bio-Signal Processor 30
3.2.1 Multi-Channel Multi-Mode ADC 31
3.2.2 Serial Peripheral Interface 40
3.2.3 Universal Asynchronous Receiver/Transmitter 40
3.2.4 General Purpose Input/Output 41
3.2.5 Multi-Channel Bio-Signal Acquisition and Analysis Platform 41
3.2.6 Implementation Results 43
3.3 Power-Efficient Seizure Detection SoC 48
3.3.1 64-Point Entropy Coding Accelerator 50
3.3.2 64-Point FFT Accelerator 52
3.3.3 Data Control Unit 57
3.3.4 Implementation Results 60
Chapter 4 Software Design 63
4.1 Epileptic Seizure Detection Algorithm 63
4.1.1 Data for Analysis and Training 63
4.1.2 Feature Extraction 64
4.1.3 Classifier 65
4.2 Firmware Implementation and Optimization 68
4.3 Graphical User Interface for Real-Time Display and Long-Term Recording 72
Chapter 5 Experimental Result and Comparison 74
5.1 Experimental Flow 74
5.2 Animal Preparation 76
5.3 Seizure Detection Accuracy 77
5.4 Power Consumption and Performance Evaluation 80
5.5 Summary 84
Chapter 6 Conclusion and Future Works 86
REFERENCES 89
[1] L.S.Y. Wong, S. Hossain, A. Ta, J. Edvinsson, D.H. Rivas, and H. Naas, "A very low-power CMOS mixed-signal IC for implantable pacemaker applications," IEEE Journal of Solid-State Circuits, vol.39, no.12, pp. 2446- 2456, Dec. 2004.
[2] Kilhwan Kim, Unsun Cho, Yunho Jung, and Jaeseok Kim, "Design and implementation of biomedical SoC for implantable cardioverter defibrillators," in Proc. IEEE Asian Solid-State Circuits Conference, pp.248-251, 12-14 Nov. 2007.
[3] Santosh Chede and Kishore Kulat, “Design Overview of Processor Based Implantable Pacemaker,” Journal of Computers, vol. 3, no. 8, pp. 49-57, August 2008.
[4] Sunyoung Kim, Namjun Cho, Seong-Jun Song, Donghyun Kim, Kwanho Kim and Hoi-Jun Yoo, “A 0.9-V 96-μW Digital Hearing Aid Chip with Heterogeneous S-D DAC," Symposium on VLSI Circuits Digest of Technical Papers, pp.55-56, 2006.
[5] Harry Neuteboom, Ben M. J. Kup, and Mark Janssens, "A DSP-based hearing instrument IC," IEEE Journal of Solid-State Circuits, vol.32, no.11, pp.1790-1806, Nov. 1997.
[6] Sunyoung Kim, Seung Jin Lee, Namjun Cho, Seong-Jun Song, and Hoi-Jun Yoo, "A Fully Integrated Digital Hearing Aid Chip With Human Factors Considerations," IEEE Journal of Solid-State Circuits, vol.43, no.1, pp.266-274, Jan. 2008.
[7] Rahul Sarpeshkar, Christopher Salthouse, Ji-Jon Sit, Michael W. Baker, Serhii M. Zhak, Timothy K.-T. Lu, Lorenzo Turicchia, and Stephanie Balster, "An ultra-low-power programmable analog bionic ear processor," IEEE Transactions on Biomedical Engineering, vol.52, no.4, pp.711-727, April 2005.
[8] Julius Georgiou, and Christopher Toumazou, "A 126-μW cochlear chip for a totally implantable system," IEEE Journal of Solid-State Circuits, vol.40, no.2, pp. 430- 443, Feb. 2005.
[9] C. Haberler, F. Alesch, P. Mazal, P. Pilz, K. Jellinger, M. Pinter, J. Hainfellner, and H. Budka, “No tissue damage by chronic deep brain stimulation in Parkinson's disease”, Ann Neurol, vol. 48, pp. 372-376, 2000.
[10] M. Kitagawa, J. Murata, S. Kikuchi, Y. Sawamura, H. Saito, H. Sasaki, and K. Tashiro, “Deep brain stimulation of subthalamic area for severe proximal tremor”, Neurology, vol. 55, pp. 114-116, 2000.
[11] Jongwoo Lee, Hyo-Gyuem Rhew, D. Kipke, M. Flynn, "A 64 Channelprogrammable closed-loop deep brain stimulator with 8 channel neural amplifier and logarithmic ADC," IEEE Symposium on VLSI Circuits,pp.76-77, 18-20 June 2008.
[12] S. Santaniello, G. Fiengo, L. Glielmo, M. Grill Warren, "Closed-Loop Control of Deep Brain Stimulation: A Simulation Study," IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.19, no.1, pp.15-24, Feb. 2011.
[13] Xiao-jiang Feng, Brian Greenwald, Herschel Rabitz, Eric Shea-Brown, and Robert Kosut, “Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model, “ J. Neural Eng.,vol. 4, pp.L14–L21, 2007.
[14] Privitera MD, Welty TTE, Ficker DDM, and Welge J, “Vagus nerve stimulation for partial seizures (Review),” JohnWiley & Sons, Ltd. 2010.
[15] Physician’s Manual: NeuroCybernetic Prosthesis System, Cyberonics, Inc., Dallas Texas, 2012.
[16] Felice T. Sun, Martha J. Morrell, and Robert E. Wharen, Jr, “Responsive Cortical Stimulation for the Treatment of Epilepsy,” Neurotherapeutics, vol. 5, pp. 68-74, January 2008.
[17] Lisa P. Weinberg, “Implantable neural stimulation device providing activity, reset, and long term closed-loop peripheral vascular disease therapy and method,” U.S. Patent 7,123,967, Oct. 17, 2006.
[18] R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, F. Solzbacher, "A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Recording System," IEEE Journal of Solid-State Circuits, vol.42, no.1, pp.123-133, Jan. 2007.
[19] Sodagar, A.M.; Wise, K.D.; Najafi, K.; , "A Fully Integrated Mixed-Signal Neural Processor for Implantable Multichannel Cortical Recording," IEEE Transactions on Biomedical Engineering, , vol.54, no.6, pp.1075-1088, June 2007.
[20] James D. Weiland, and Mark S. Humayun, "Visual Prosthesis," Proceedings of the IEEE, vol.96, no.7, pp.1076-1084, July 2008.
[21] Wentai Liu, M.S. Hurnayun, "Retinal prosthesis," IEEE Int. Solid-State Circuits Conf. Digest of Technical Paper, vol.1, pp. 218- 219, 15-19 Feb. 2004.
[22] S. Kim, P. Tathireddy, R. Normann, and F. Solzbacher, “Thermal impact of an active 3-d microelectrode array implanted in the brain,” IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 15, no. 4, pp. 493-501, December 2007.
[23] J.C. LaManna, K.A. McCracken, M. Patil, and O.J. Prohaska, “Stimulus-activated changes in brain tissue temperature in the anesthetized rat,” Metab. Brain Dis., vol. 4, pp. 225-237, 1989.
[24] TMS320C5515 Fixed-Point Digital Signal Processor, Texas Instruments, Inc., Dallas Texas, 2012.
[25] TMS320VC5506 Fixed-Point Digital Signal Processor Data Manual, Texas Instruments, Inc., Dallas Texas, 2008.
[26] ADSP-BF592 Blackfin Embedded Processor, Analog Devices, Inc., Norwood, MA, 2011.
[27] T.-J. Chen, C. Jeng, S.-T. Chang, H. Chiueh, S.-F. Liang, Y.-C. Hsu, and T.-C. Chien, "A Hardware Implementation of Real-Time Epileptic Seizure Detector on FPGA," in Proc. IEEE Biomedical Circuits and Systems Conference, San Diego, USA, Nov. 10-12, 2011.
[28] Cyclone IV FPGAs: Optimized for Lowest Power, Altera, Corporation. [Online]. Available: http://www.trianglebiosystems.com/Files/W32Brief.pdf.
[29] Xilinx Power Estimator (XPE), Xilinx, Inc.. [Online]. Available: http://www.xilinx.com/products/design_tools/logic_design/xpe.htm.
[30] Lattice Power Estimator, Lattice Semiconductor Corporation. [Online]. Available: http://www.latticesemi.com/dynamic/view_document.cfm?document_id=46811.
[31] OMAP-L137, Texas Instruments, Inc., Dallas Texas. [Online]. Available: http://www.ti.com/product/omap-l137.
[32] Stellaris LM3S3651 Microcontroller Data Sheet, Texas Instruments, Inc., Dallas, Texas, Nov. 2011.
[33] ADuCM360/ADuCM361, Analog Devices, Inc., Norwood, MA, 2011.
[34] CC2430 Data Sheet (rev. 2.1), Texas Instruments, Inc., Dallas Texas.
[35] SiM3C1xx, Silicon Laboratories, Inc., Austin, TX, 2012.
[36] MSP430FG47x MIXED SIGNAL MICROCONTROLLER, Texas Instruments, Inc., Dallas, Texas, March 2011.
[37] Medical Applications Guide, Texas Instruments, Inc., Dallas, Texas, 2010.
[38] Joyce Kwong, and Anantha P. Chandrakasan, "An energy-efficient biomedical signal processing platform," IEEE Journal of Solid-State Circuits, vol. 46, no. 7, pp.1742-1753, July 2010.
[39] Fred J. Taylor, Digital Filters: Principles and Applications with MATLAB, 1st ed., Wiley-IEEE Press, 2012, pp. 127-150.
[40] W. H. Theodore and R. S. Fisher, “Brain stimulation for epilepsy,” The Lancet Neurology, vol. 3, pp. 111-118, 2004.
[41] W. C. Stacey and B. Litt, “Technology insight: neuroengineering and epilepsy - designing devices for seizure control,” Nature Clinical Practice Neurology, vol. 4, pp. 190-201, 2008.
[42] Miguel A. L. Nicolelis, “Actions from thoughts,” Nature, vol. 409, pp.403-407, 2001.
[43] B. Feddersen, L. Vercueil, S. Noachtar, O. David, A. Depaulis and C. Deransart, “Controlling seizures is not controlling epilepsy: A parametric study of deep brain stimulation for epilepsy,“ Neurobiology of Disease, vol. 27, pp. 292-300, 2007.
[44] Naveen Verma, Ali Shoeb, Jose Bohorquez, Joel Dawson, John Guttag, and Anantha P. Chandrakasan, "A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System," IEEE Journal of Solid-State Circuits, vol.45, no.4, pp.804-816, April 2010.
[45] Mushfiq U. Saleheen, Homa Alemzadeh, Ajay M. Cheriyan, Zbigniew Kalbarczyk, and Ravishankar K. Iyer, "An efficient embedded hardware for high accuracy detection of epileptic seizures," in 2010 3rd International Conference on Biomedical Engineering and Informatics, vol.5, pp.1889-1896, Oct. 2010.
[46] Muhammad Tariqus Salam, Mohamad Sawan, and Dang Khoa Nguyen, “A Novel Low-Power-Implantable Epileptic Seizure-Onset Detector,” IEEE Transactions on Biomedical Circuits and Systems, vol.5, no. 6, pp.568-578, 2011.
[47] Shriram Raghunathan, Sumeet K Gupta, Matthew PWard, Robert MWorth, Kaushik Roy and Pedro P Irazoqui, “The design and hardware implementation of a low-power real-time seizure detection algorithm,” Journal of Neural Engineering, pp.1-13, 2009.
[48] Himanshu Markandeya, Georgios Karakonstantis, Shriram Raghunathan, Pedro Irazoqui and Kaushik Roy, “Low-Power DWT-Based Quasi-Averaging Algorithm and Architecture for Epileptic Seizure Detection,” 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design, pp.301-306, 18-20 Aug. 2010.
[49] J. Aziz, R. Karakiewicz, R. Genov, A. W. L. Chiu, B. L. Bardakjian, M. Derchansky, and P. L. Carlen, “In Vitro Epileptic Seizure Prediction Microsystem,” 2007 IEEE International Symposium on Circuits and Systems, pp. 3115-3118, 2007.
[50] J.N.Y. Aziz, R. Karakiewicz, R. Genov, B.L. Bardakjian, M. Derchansky, P.L. Carlen, "Real-time seizure monitoring and spectral analysis microsystem," in Proc. IEEE International Symposium on Circuits and Systems, pp.2133-2136, 21-24 May 2006.
[51] Shao-Hang Hung, Chih-Feng Chao, Shu-Kai Wang, Bor-Shyh Lin, Chin-Teng Lin, "VLSI implementation for Epileptic Seizure Prediction System based on wavelet and chaos theory," in 2010 IEEE Region 10 Conference , pp.364-368, 21-24 Nov. 2010.
[52] K. Abdelhalim, V. Smolyakov, R. Genov, "Phase-Synchronization Early Epileptic Seizure Detector VLSI Architecture," IEEE Transactions on Biomedical Circuits and Systems, vol.5, no.5, pp.430-438, Oct. 2011.
[53] M. Kemal Kiymik, Inan Güler, Alper Dizibüyük, and Mehmet Akin, “Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application”, Computers in Biology and Medicine, vol. 35, issue 7, pp. 603-616, 2005.
[54] Jerald Yoo, Long Yan, Dina El-Damak, Muhammad Bin Altaf, Ali Shoeb, Hoi-Jun Yoo, Anantha Chandrakasan, "An 8-channel scalable EEG acquisition SoC with fully integrated patient-specific seizure classification and recording processor," IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp.292-294, 19-23 Feb. 2012.
[55] Y. Chen, T. Chen, T. Lee, and L. Chen, “Sub-microwatt correlation integral processor for implantable closed-loop epileptic neuromodulator,”in Proc. Int. Symp. Circuits and Systems, pp. 2083-2086, 2010.
[56] Homa Alemzadeh, Mushfiq U. Saleheen, Zhanpeng Jin, Zbigniew Kalbarczyk, Ravishankar K. Iyer, "RMED: A reconfigurable architecture for embedded medical monitoring," in 2011 IEEE/NIH Life Science Systems and Applications Workshop (LiSSA), pp.112-115, 7-8 April 2011.
[57] Tung-Chien Chen, Kuanfu Chen, Zhi Yang, Cockerham, K., Wentai Liu, "A biomedical multiprocessor SoC for closed-loop neuroprosthetic applications," IEEE International Solid-State Circuits Conference - Digest of Technical Papers, pp.434-435,435a, Feb. 2009.
[58] Srinivasa R. Sridhara, Michael DiRenzo, Srinivas Lingam, Seok-Jun Lee, Raúl Blázquez, Jay Maxey, Samer Ghanem, Yu-Hung Lee, Rami Abdallah, Prashant Singh, and Manish Goel," Microwatt Embedded Processor Platform for Medical System-on-Chip Applications," IEEE Journal of Solid-State Circuits, vol.46, no.4, pp.721-730, April 2011.
[59] Spanedda F, Cendes F, Gotman J., “Relations between EEG seizure morphology, interhemispheric spread, and mesial temporal atrophy in bitemporal epilepsy,” Epilepsia, vol. 38, pp. 1300-1314, 1997.
[60] Andrew M. White, Philip A. Williams, Damien J. Ferraro, Suzanne Clark, Shilpa D. Kadam, F. Edward Dudek, Kevin J. Staley, “Efficient unsupervised algorithms for the detection of seizures in continuous EEG recordings from rats after brain injury,” Journal of Neuroscience Methods, vol. 152, issues 1-2, pp. 255-266, 15 April 2006.
[61] Kunjan Patel, Chern-Pin Chua, Stephen Fault and C. J. Bleakley, "Low power real-time seizure detection for ambulatory EEG," in 3rd International Conference on Pervasive Computing Technologies for Healthcare, pp.1-7, 1-3 April 2009.
[62] Sheng-Fu Liang, Wan-Lin Chang, and Herming Chiueh, "EEG-based absence seizure detection methods," in 2010 International Joint Conference on Neural Networks (IJCNN), , pp.1-4, 18-23 July 2010.
[63] Sheng-Fu Liang, Hsu-Chuan Wang, and Wan-Lin Chang, “Combination of EEG Complexity and Spectral Analysis for Epilepsy Diagnosis and Seizure Detection,” EURASIP Journal on Advances in Signal Processing, vol. 2010.
[64] Chung-Ping Young, Sheng-Fu Liang, Da-Wei Chang, Yi-Cheng Liao, Fu-Zen Shaw, and Chao-Hsien Hsieh, “A Portable Wireless Online Closed-Loop Seizure Controller in Freely Moving Rats,” IEEE Trans. on Instrumentation and Measurement, vol. 60, no.2, pp. 513-521, 2011.
[65] David A. Patterson, and David R. Ditzel. “The case for the reduced instruction set computer,” SIGARCH Comput. Archit. News, vol. 8, no. 6, pp. 25-33, October 1980.
[66] N. Kannathal, M. L. Choo, R. U. Acharya, and P. K. Sadasivan, “Entropies for detection of epilepsy in EEG,” Comput. Method Programs Biomed., vol. 80, no. 3, pp. 187-194, Dec. 2005.
[67] O. A. Rosso, “Entropy changes in brain function,” Int. J. Psychophysiol., vol. 64, no. 1, pp. 75–80, Apr. 2007.
[68] V. Srinivasan, C. Eswaran, and N. Sriraam, “Approximate entropy-based epileptic EEG detection using artificial neural networks,” IEEE Trans. Inf. Technol. Biomed., vol. 11, no. 3, pp. 288-295, May 2007.
[69] S. Ghosh-Dastidat, H. Adeli, and N. Dadmehr, “Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection,” IEEE Trans. Biomed. Eng., vol. 54, no. 9, pp. 1545-1551, Sep. 2007.
[70] S. M. Pincus, “Approximate entropy as a measure of system complexity,” in Proc. Nat. Acad. Sci., vol. 88, no. 6, pp. 2297-2301, Mar. 1991.
[71] F. Z. Shaw, “Is spontaneous high-voltage rhythmic spike discharge in Long Evans rats an absence-like seizure activity?” Journal of Neurophysiology, vol. 91, pp. 63-77, 2004.
[72] F. Z. Shaw, “7-12 Hz high-voltage rhythmic spike discharges in rats evaluated by antiepileptic drugs and flicker stimulation,” Journal of Neurophysiology, vol. 97, pp. 238-247, 2007.
[73] F.-Z. Shaw and Y.-F. Liao, “Incertal control of high-voltage cortical oscillation and whisker tremor in rats with spontaneous absence epileptic discharges,” in Proc. Forum Eur. Neurosci. Soc., Geneva, Switzerland, 2008.
[74] G. Golub, “Numerical methods for solving linear least squares problems,” Numerische Mathematik, vol. 7, pp. 206-216, 1965.
[75] Damjan Lampret, OpenRISC 1200 IP Core Specification (Rev. 0.9.). [Online]. Available: http://www.opencores.com.
[76] Joseph Yiu, Migrating from 8-, 16- to 32-bit microcontrollers. [Online]. Available: http://www.embeddeddesignindia.co.in/STATIC/PDF/201005/EDIOL_2010MAY20_MCP_TA_01.pdf?SOURCES=DOWNLOAD.
[77] White Paper: The right microcontroller for low power applications, EnSilica. [Online]. Available: http://www.ensilica.com/pdfs/White_Paper_The_right_Microcontroller_
for_low-power_apps.pdf.
[78] SourceMeter Line, Keithley Instruments. [Online] Available: http://www.keithley.com/data?asset=372.
[79] Patterson, D. and Hennessy, J., “Computer architecture: A quantitative approach.” Morgan Kaufmann Publishers, Inc., 4’th edition, 2006.
[80] Brian J. Gough, “An Introduction to GCC,” Network Theory Limited, United Kingdom, August 2005.
[81] W.-M. Chen, W.-C. Yang, T.-Y. Tsai, H. Chiueh, and C.-Y. Wu, “The Design of CMOS General-Purpose Analog Front-End Circuit with Tunable Gain and Bandwidth for Biopotential signal recording system,” in Proc. IEEE EMBC, Boston, USA, pp.4784-4787, Sep. 2011.
[82] N. V. Thakor, “Biopotentials and Electrophysiology Measurement,” in The Measurement, Instrumentation and Sensors Handbook, Boca Raton, CRC Press, 1999.
[83] R.F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60uW 60nV/rtHz Readout Front-End for Portable Biopotential Acquisition Systems,” ISSCC Digest of Technical Papers, pp.56-57, Feb. 2006.
[84] M. J. Burke and D. T. Gleeson, “A micropower dry-electrode ECG preamplifier,” IEEE Trans. Biomed. Eng., vol. 47, no. 2, pp. 155–162, Feb. 2000.
[85] C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” in Proc. the IEEE, vol. 84, pp. 584-1614, Nov. 1996.
[86] R. Schreier and G. Temes, Understanding Delta-Sigma Data Converters, Wiley-IEEE Press, 2005.
[87] J.C. Candy and G.C. Temes, “Oversampling Methods for A/D and D/A Conversion,” IEEE Press, pp. 1-29, 1992.
[88] Bonnie Baker and Miro Oljaca, “How the Voltage Reference Affects ADC Performance, Part 3,” Analog Applications Journal, 2009.
[89] E. B. Hogenauer, ”An Economical Class of Digital Filters for Decimation and Interpolation,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 29, no.2, pp. 455-162, Apr. 1981.
[90] WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores (Rev. B.3), OpenCores Organization, Sept. 2002. [Online]. Available: http://cdn.opencores.org/downloads/wbspec_b3.pdf.
[91] Karthik Soundarapandian, and Mark Berarducci, "Analog Front-End Design for ECG Systems Using Delta-Sigma ADC," Texas Instruments, Inc., Dallas, Texas, April 2010.
[92] Nancy A. Collop, W. McDowell Anderson; Brian Boehlecke, David Claman, Rochelle Goldberg, Daniel J. Gottlieb, David Hudgel, Michael Sateia, Richard Schwab, “Clinical Guidelines for the Use of Unattended Portable Monitors in the Diagnosis of Obstructive Sleep Apnea in Adult Patients,” Journal of Clinical Sleep Medicine, vol. 3, no. 7, pp. 737-747, 2007.
[93] 32 Channel Wireless Neural Headstage System, Triangle BioSystems, Int’l., March 2011. [Online]. Available: http://www.trianglebiosystems.com/Files/W32Brief.pdf.
[94] W. E. Wright, “An efficient video on-demand model,” IEEE Comput.,vol. 34, no. 5, pp. 64–70, May 2001.
[95] Richard Herveille, “SPI Core Specifications,” OpenCores Organization, January 2003.
[96] Damjan Lampret, and Goran Djakovic, “GPIO IP Core Specification,” OpenCores Organization, December 2003.
[97] Jacob Gorban, “UART IP Core Specification,” OpenCores Organization, August 2002.
[98] IAR Embedded Workbench®, IAR System, Corporation. [Online]. Available: http://www.iar.com/en/Products/IAR-Embedded-Workbench/.
[99] Lihong Jia, Yonghong Gao, Jouni Isoaho, and Hannu Tenhunen, "A new VLSI-oriented FFT algorithm and implementation," in Proc. IEEE ASIC Conference, pp.337-341, Sep 1998.
[100] Wold E. H. and Despain A. M., “Pipeline and Parallel-Pipeline FFT Processors for VLSI Implementation,” IEEE Trans. Comput., vol. 33, no. 5, pp. 414-426, May 1984.
[101] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, "Gated-Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories," in International Symposium on Low Power Electronics and Design, 2000.
[102] J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, and V. De, "Dynamic Sleep Transistor and Body Bias for Active Leakage Power Control of Microprocessors," IEEE Journal of Solid-State Circuits, vol. 38, pp. 1838-1845, November 2003.
[103] M. Nakai, S. Akui, K. Seno, T. Meguro, T. Seki, T. Kondo, A. Hashiguchi, H. Kawahara, K. Kumano, and M. Shimura, "Dynamic Voltage and Frequency Management for a Low-Power Embedded Microprocessor," IEEE Journal of Solid-State Circuits, vol. 40, pp. 28-35, January 2005.
[104] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Broderson, "A Dynamic Voltage Scaled Microprocessor System," IEEE Journal of Solid-State Circuits, vol. 35, pp. 1571-1580, November 2000.
[105] Qing Wu, Pedram, M. Xunwei Wu , "Clock-gating and its application to low power design of sequential circuits," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol.47, no.3, pp.415-420, Mar 2000.
[106] J. T. Kao and A. P. Chandrakasan, "Dual-Threshold Voltage Techniques for Low-Power Digital Circuits," IEEE Journal of Solid-State Circuits, vol. 35, pp. 1009-1018, July 2000.
[107] C.-H. Hua and W. Hwang, "A Power Gating Structure with Concurrent Data Retention and Intermediate Modes in 100nm CMOS Technology," in 15th VLSI Design/CAD Symposium, 2004.
[108] K. Nose, M. Hirabayashi, H. Kawaguchi, S. Lee, and T. Sakurai, "VTH-Hopping Scheme to Reduce Subthreshold Leakage for Low-Power Processors," IEEE Journal of Solid-State Circuits, vol. 37, pp. 413-419, March 2002.
[109] K. Usami and M. Horowitz, "Clustered Voltage Scaling Technique for Low-Power Design," in International Symposium on Low Power Electronics and Design, 1995.
[110] D. E. Lackey, P. S. Zuchowski, T. R. Bednar, D. W. Stout, S. W. Gould, and J. M. Cohn, "Managing Power and Performance for System-on-Chip Designs Using Voltage Islands," in International Conference on Computer Aided Design, 2002.
[111] R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan, D. Sylvester, A. Srivastava, and S. Kulkarni, "Pushing ASIC Performance in a Power Envelope," in 40th Design Automation Conference, 2003.
[112] Fu-Zen Shaw, Ching J Lai, and Ted H Chiu, “A low-noise flexible integrated system for recording and analysis of multiple electrical signals during sleep-wake states in rats,” Journal of Neuroscience Methods, vol. 118, issue 1, pp. 77-87, July 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊