跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 07:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃昱銘
研究生(外文):Huang, Yu-Ming
論文名稱:非記憶型多重存取廣義衰減之衰減數
論文名稱(外文):The fading number of memoryless multiple-access general fading channels
指導教授:莫詩台方
指導教授(外文):Moser, Stefan M.
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:40
中文關鍵詞:衰減數多重存取通道
外文關鍵詞:fading numbermultiple-access channel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:83
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中探討的是非同調多重存取廣義規律衰減通道的通道容量。其中傳送端的使 用者允許擁有任意數量的天線,但接收端僅允許擁有一條天線。在此通道中,所傳送的訊 號會遭遇相加高斯雜訊以及非記憶型廣義衰減的影響,也就是說,此衰減不被特定的機率 分布所限制,如雷利(Rayleigh)分布及萊斯(Rician)分布。雖然我們假設對於時間來說 為非記憶性,但我們允許對於空間上的記憶,也就是說,對於不同天線的衰減分布是相關 的。在傳送端使用者之間不允許相互合作通訊,因此各使用者假設在統計特性上獨立。
我們的研究是根據已知的單使用者廣義衰減通道的漸進通道容量,推廣到多使用者多重 存取的總通道容量,且允許傳送端使用者擁有多餘一條的天線數。我們知道在此通道下, 增加可使用功率對於通道容量的成長是極沒效率的,僅以雙對數形式增長,此外,在高訊 雜比時,漸進總通道容量中的第二項數值,我們稱之為衰減數。我們成功證明在此通道下 的衰減數與單使用者的衰減數相同。
此研究結論在考量三種功率限制下皆成立,分別為尖峰值功率限制,時間平均功率限 制,以及允許功率分享的時間平均功率限制。其中第三項限制是不實際的因為它代表我們 允許使用者分享功率卻不允許合作,但它有助於我們的推導且我們可證明結果皆一致。
我們的證明是基於互消息的對偶型上界與輸入信號的機率分布逃脫到無限的觀念,其精 神為當可用的功率趨近於無限大時,輸入信號必定會使用趨近於無限大的符號。
In this thesis, the sum-rate capacity of a noncoherent, regular multiple-access general fading channel is investigated, where each user has an arbitrary number of antennas and the receiver has only one antenna. The transmitted signal is subject to additive Gaussian noise and fading. The fading process is assumed to be general and memoryless, i.e., it is not restricted to a specific distribution like Rayleigh or Rician fading. While it is memoryless (i.e., independent and identically distributed IID) over time, spacial memory is allowed, i.e., the fading affecting different antennas may be dependent. On the transmitter side cooperation between users is not allowed, i.e., the users are assumed to be statistically independent.
Based on known results about the capacity of a single-user fading channel, we derive the exact expression for the asymptotic multiple-user sum-rate capacity. It is shown that the capacity grows only double-logarithmically in the available power. Futhermore, the second term of the high-SNR asymptotic expansion of the sum-rate capacity, the so-called fading number, is derived exactly and shown to be identical to the fading number of the single-user channel when all users apart from one is switched off at all times.
The result holds for three different power constraints. In a first scenario, each user must satisfy its own strict peak-power constraint; in a second case, each user’s power is limited by an average-power constarint; and in a third situation — somewhat unrealistically — it is assumed that the users have a common power supply and can share power (even though they still cannot cooperate on a signal basis).
The proof is based on a duality-based upper bound on mutual information and on the concept of input distributions that escape to infinity, meaning that when the available power tends to infinity, the input must use symbols that also tend to infinity.
1 Introduction 1
1.1 Introduction&;Background ............................ 1
1.2 Notation....................................... 3
2 Channel Model 5
2.1 TheGeneralChannelModel............................ 5
2.2 ASimpleSpecialCaseoftheChannelModel .................. 6
2.3 DiscussiononPowerConstraints ......................... 6
3 Mathematical Preliminaries &; Previous Results 9
3.1 TheChannelCapacity............................... 9
3.2 TheFadingNumber ................................ 11
3.3 EscapingtoInfinity ................................ 12
3.4 Generalization of Escaping to Infinity to Multiple Users . . . . . . . . . . . . 14
3.5 An Upper Bound on the Sum-Rate Capacity and Fading Number . . . . . . . 14
3.6 TheFadingNumberofRicianFadingSISOMAC . . . . . . . . . . . . . . . . 15
4 Main Result 16
4.1 NaturalUpperandLowerBounds ........................ 16
4.2 AnUpperBoundontheFadingNumberforOurChannels . . . . . . . . . . 17
4.3 TheFadingNumberofGeneralFadingMAC .................. 17
5 Derivation of Results 19
5.1 DerivationofTheorem4.1............................. 19
5.2 DerivationofTheorem4.2andCorollary4.3................... 22
6 Discussion and Conclusion 31
A Derivation of Equation (5.58) 34
B Derivation of Equation (5.72) 37

[1] C. E. Shannon, “A mathematical theory of communication,” Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, July and October 1948.
[2] A. Lapidoth and S. M. Moser, “Capacity bounds via duality with applications to multiple-antenna systems on flat fading channels,” IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2426–2467, October 2003.
[3] S. M. Moser, “Duality-based bounds on channel capacity,” Ph.D. dissertation, ETH Zurich, October 2004, Diss. ETH No. 15769. [Online]. Available: http://moser.cm.nct u.edu.tw/publications.html
[4] ——, “The fading number of memoryless multiple-input multiple-output fading chan- nels,” IEEE Transactions on Information Theory, vol. 53, no. 7, pp. 2652–2666, July 2007.
[5] V. Sethuraman, L. Wang, B. Hajek, and A. Lapidoth, “Low-snr capacity of noncoherent fading channels,” IEEE Transactions on Information Theory, vol. 55, no. 4, pp. 1555– 1574, April 2009.
[6] G.-R. Lin and S. M. Moser, “The fading number of a multiple-access Rician fading channel,” March 2009, submitted to IEEE Information Theory Workshop (ITW).
[7] S. M. Moser, “Capacity analysis of multiple-access OFDM channels,” Department of Communication Engineering, National Chiao Tung University (NCTU), Zhudong, Taiwan, final report of project 4G Wireless Access Technology (G1-95003), from January 1, to December 31, 2006, funded by Industrial Technology Research Institute (ITRI). [Online]. Available: http://moser.cm.nctu.edu.tw/publications.html
[8] I. Csisz ́ar and J. K ̈orner, Information Theory: Coding Theorems for Discrete Memory- less Systems. Budapest: Academic Press, 1981.
[9] S. M. Moser, Advanced Topics in Information Theory (Lecture Notes), version 1, spring semester 2012, Information Theory Lab, Department of Electrical &; Computer Engineering, National Chiao Tung University (NCTU), March 2012. [Online]. Available: http://moser.cm.nctu.edu.tw/scripts.html[10] Y.-H. Chou, “The fading number of multiple-access Rician fading channel with memory,” Master’s thesis, Information Theory Lab, Department of Electrical &; Computer Engineering, National Chiao Tung University (NCTU), Hsinchu, Taiwan, August 2012, supervised by Prof. Dr. Stefan M. Moser. [Online]. Available: http://mo ser.cm.nctu.edu.tw/publications.html

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top