跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2025/01/13 14:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃子嘉
研究生(外文):Huang, Tzu-Chia
論文名稱:用於震動式微獵能系統的整流充電幫浦之實現與最佳化
論文名稱(外文):Realization and Optimization of a Rectifier Charge Pump Employed in Vibratory Energy Harvesters
指導教授:趙昌博
指導教授(外文):Chao, C.-P. Paul
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:75
中文關鍵詞:充電幫浦電能管理電路獵能電路最佳化整流器
外文關鍵詞:Charge PumpPower ManagementEnergy Harvesting CircuitOptimizationRectifier
相關次數:
  • 被引用被引用:2
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,許多微系統開始使用獵能裝置作為能量之來源,以免除電池之更換。震動式能源為一容易取得之能量源,因此在本篇論文中,設計一整流式充電幫浦以及後方的電能管理電路與穩壓器,將微獵能器產生之微小交流式能量,轉換為可供電子裝置使用之直流能量。為了使能量的收集的更為有效率,本篇論文亦提出了專用於此整流充電幫浦之最佳化方法。本篇論文提出之微獵能電路,可將峰值大於2伏特之交流能量,轉換為3.3伏特之直流電源;同時,電能管理電路可以防止前端能量源消失或減弱時,整體電路不正常之運作。藉由本篇提出之最佳化方法,充電幫浦萃取的能量相對於最大能量有8.67%的誤差,而轉換至過渡電容時僅有1.63%之誤差。本篇論文所提出的電路,皆成功由台積電0.35微米製程模擬與實現。在文中,電路設計之概念與原理,以及實驗結果皆完整介紹與說明。
In recent years, energy harvesters have been employed to micro-systems as energy sources to avoid the frequent substitution of batteries. Vibratory energy is an energy which is easy to be derived; therefore, in this thesis, a rectifier charge pump, a power management, and a low-dropout regulator are designed, transferring the AC-like energy produced by harvesters to the DC energy suitable for common electrical devices. For deriving high power transferring efficiency, the optimal method for the proposed rectifier charge pump is also proposed. The energy harvesting circuit proposed in this thesis can transfer the AC energy of which the peak voltage is more than 2V to the DC energy in a fashion of 3.3V; furthermore, the power management can avoid the abnormal operation when the input power is weak. By the proposed optimal method, 8.67% error occurs when the energy is extracted from harvesters (Stage1), and 1.63% error occurs when the energy is transfer to the interface capacitor (Stage 2). The proposed circuit is simulated and fabricated via TSMC 0.35?慆 process successfully. In the article, the concepts, operational principles, and experiment results are illustrated.
摘要 i
ABSTARCT ii
誌謝 iii
TABLE OF CONTENT iv
TABLE TITLES vii
FIGURE CAPTIONS viii
CHAPTER I Introduction 1
1.1 Motivation and Background 1
1.2 Power Sources for Energy Harvesting 2
1.2.1 Motion and Vibration 3
1.2.2 Radio Frequency 4
1.3 Previous Topologies for Rectifying 4
1.3.1 Full-bridge rectifier 5
1.3.2 Conventional Rectifier Charge Pump 6
1.4 Previous Techniques Achieving Optimization 7
1.4.1 DC-DC Charge Pump 7
1.4.2 DC-DC Pulse Width Modulation (PWM) Converter 7
1.4.3 Synchronous Switch Harvesting on Inductor (SSHI) 8
1.5 Summary 9
CHAPTER II The Proposed Energy Harvesting Circuit 11
2.1 Design Concept 11
2.2 Proposed Rectifier Charge Pump Circuit 13
2.2.1 Basic Conception 13
2.2.2 Bulk-controlled Diode-connected PMOS 14
2.2.3 Operational Principles 15
2.2.4 Simulation Results 20
2.3 Power Management 21
2.3.1 Operational Principles 21
2.3.2 Simulation Results 24
2.4 Low-dropout Regulator 25
2.4.1 Operational Principles 25
2.4.2 Simulation Results 27
2.5 Alternative Energy Harvesting Circuit 28
2.5.1 Basic Concept 28
2.5.2 Operational Principles 29
2.5.3 Simulation Results 29
CHAPTER III Optimizing the Proposed Charge Pump 32
3.1 Basic Concept 32
3.2 Optimization of Stage 1 33
3.3 Optimization of the Stage 2 39
3.3.1 Common Consideration 39
3.3.2 Loading Consideration 44
3.4 Complete Design Flow 46
3.5 Verification 47
3.5.1 Verifying the optimization of Stage 1 via simulated IC proces 47
3.5.2 Verifying the optimization of Stage 2 via simulated IC proces 49
CHAPTER IV Experiment Results 53
4.1 The Layout and Fabricated Circuit 53
4.2 The Proposed Rectifier Charge Pump Circuit 55
4.3 The Proposed Power Management 58
4.4 The Low-dropout Regulator 60
4.5 The Entire Energy Harvesting Circuit 61
4.6 The Alternative Energy Harvesting Circuit 62
4.7 Verifying the Optimization of Stage 1 via Fabricated IC 64
4.8 Verifying the Optimization of Stage 2 via Fabricated IC 66
CHAPTER V Conclusions and Future Works 69
5.1 Conclusions 69
5.2 Future Works 70
Appendix 71
References 74
[1] R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders, and C. V. Hoof, "Energy Harvesting for Autonomous Wireless Sensor Networks," Solid-State Circuits Magazine, IEEE, vol. 2, pp. 29-38, 2010.
[2] G. Chen, S. Hanson, D. Blaauw, and D. Sylvester, "Circuit Design Advances for Wireless Sensing Applications," Proceedings of the IEEE, vol. 98, pp. 1808-1827, 2010.
[3] Y. K. Ramadass and A. P. Chandrakasan, "A Battery-Less Thermoelectric Energy Harvesting Interface Circuit With 35 mV Startup Voltage," Solid-State Circuits, IEEE Journal of, vol. 46, pp. 333-341, 2011.
[4] P. C.-P. Chao, C. I. Shao, C. X. Lu, and C. K. Sung, "A New Energy Harvest System with a Hula-Hoop Transformer, Micro-generator and Interface Energy-Harvesting Circuit," Micro-system Technology, 2011.
[5] E. O. Torres and G. A. Rincon-Mora, "A 0.7-um BiCMOS Electrostatic Energy-Harvesting System IC," Solid-State Circuits, IEEE Journal of, vol. 45, pp. 483-496, 2010.
[6] Y. K. Ramadass and A. P. Chandrakasan, "An Efficient Piezoelectric Energy Harvesting Interface Circuit Using a Bias-Flip Rectifier and Shared Inductor," Solid-State Circuits, IEEE Journal of, vol. 45, pp. 189-204, 2010.
[7] Y. Jun, Y. Jun, M. K. Law, L. Yunxiao, L. Man Chiu, N. Kwok Ping, G. Bo, H. C. Luong, A. Bermak, C. Mansun, K. Wing-Hung, T. Chi-Ying, and M. Yuen, "A System-on-Chip EPC Gen-2 Passive UHF RFID Tag With Embedded Temperature Sensor," Solid-State Circuits, IEEE Journal of, vol. 45, pp. 2404-2420, 2010.
[8] 邵啟意,使用新式雙相位電荷幫浦於低功率獵器之設計,國立交通大學,碩士論文,民國九十九年九月。.
[9] C. B. Williams and R. B. Yates, "Analysis Of A Micro-electric Generator For Microsystems," in Solid-State Sensors and Actuators, 1995 and Eurosensors IX.. Transducers '95. The 8th International Conference on, 1995, pp. 369-372.
[10] E. Halvorsen, "Energy Harvesters Driven by Broadband Random Vibrations," Microelectromechanical Systems, Journal of, vol. 17, pp. 1061-1071, 2008.
[11] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, "Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices," Proceedings of the IEEE, vol. 96, pp. 1457-1486, 2008.
[12] D. Maurath, M. Ortmanns, and Y. Manoli, "High efficiency, low-voltage and self-adjusting charge pump with enhanced impedance matching," in Circuits and Systems, 2008. MWSCAS 2008. 51st Midwest Symposium on, 2008, pp. 189-192.
[13] M. Renaud, T. Sterken, P. Fiorini, R. Puers, K. Baert, and C. van Hoof, "Scavenging energy from human body: design of a piezoelectric transducer," in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05. The 13th International Conference on, 2005, pp. 784-787 Vol. 1.
[14] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed.: Springer, 2001.
[15] R. Yuan and D. P. Arnold, "An Input-Powered Vibrational Energy Harvesting Interface Circuit With Zero Standby Power," Power Electronics, IEEE Transactions on, vol. 26, pp. 3524-3533, 2011.
[16] J. S. Brugler, "Theoretical performance of voltage multiplier circuits," Solid-State Circuits, IEEE Journal of, vol. 6, pp. 132-135, 1971.
[17] E. Cantatore and M. Ouwerkerk, "Energy scavenging and power management in networks of autonomous microsensors," Microelectronics J., vol. 37, pp. 1584-1590, 2006.
[18] D. Guyomar, A. Badel, E. Lefeuvre, and C. Richard, "Toward energy harvesting using active materials and conversion improvement by nonlinear processing," Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, vol. 52, pp. 584-595, 2005.
[19] G. Rincon-Mora, Analog IC Design with Low-Dropout Regulators, 1st ed.: McGraw-Hill Professional, 2009.
[20] A. Holberg, CMOS Analog Circuit Design, 2nd ed.: Oxford University Press, USA, 2002.
[21] C. Min and G. A. Rincon-Mora, "Accurate, Compact, and Power-Efficient Li-Ion Battery Charger Circuit," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 53, pp. 1180-1184, 2006.
[22] W. Leran, T. J. Kazmierski, B. M. Al-Hashimi, S. P. Beeby, and R. N. Torah, "Integrated approach to energy harvester mixed technology modelling and performance optimisation," in Design, Automation and Test in Europe, 2008. DATE '08, 2008, pp. 704-709.
[23] C. Alexander, Fundamentals of Electric Circuits, 4th ed.: McGraw-Hill Professional, 2009.
[24] C. H. Edwards and D. E. Penney, Elementary Differential Equations with Boundary Value Problems, 6th ed.: Prentice Hall, 2007.
[25] S. Farahani, ZigBee Wireless Networks and Transceivers Newnes, 2008.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊