跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 23:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林珀瑞
論文名稱:矽奈米元件模擬器之發展
論文名稱(外文):Development of Device Simulator for Future Nano Technology
指導教授:渡邊浩志
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:36
中文關鍵詞:奈米元件計算電子
外文關鍵詞:nano-devicecomputational electronics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
目前,半導體元件製程技術不斷的進步,當元件尺寸小到奈米等級時,如何對元件中的載子運動做數值上的分析就顯得十分重要。在奈米尺寸等級的元件中,載子的傳輸行為必然與目前被廣泛採用於Technology Computer-Aided Design (TCAD)中的漂移–擴散電流模型(drift-diffusion model)有很大的不同。我們的目標是建立一組可以適用於奈米元件的新的載子運動模型(不同於漂移–擴散電流模型),來描述奈米元件中的載子運動行為。在這篇論文中,我們會先回顧在元件模擬領域中會使用到的物理模型及常被使用的數值分析方法。透過歷史的回顧,我們可以對於現今的元件模擬器是如何運作的以及對它們在使用上的限制有更深入的了解。接著我們會以奈米元件的觀點來探討目前所採用之分析方法的優劣。
在載子傳輸的模型裡面,波茲曼方程式(Boltzmann transport equation)是最為普遍的描述方程。但是由於它同時包含了連續項與不連續項,導致我們無法直接求得其解。於是在漂移–擴散電流模型中使用了平均場近似(mean-field approximation)的假設來消除不連續項。在此篇論文,我們先回顧了半導體物理中基本的物理模型,接著討論不同的數值分析方法,如:有限差分離散法、Scharfetter-Gummel離散法、牛頓迭代法及Gummel迭代法。此外,我們會探討目前半導體元件物理的優缺點,接著討論對於開發通用奈米元件模擬器(General-Purpose Nano Device Simulator)的關鍵因素。在我接續的博士論文中,則會持續的開發通用奈米元件模擬器。

The computational study of electron devices physics is becoming more important, as the device scaling is advanced to lift the curtain on nano-devices technologies. The carrier transport phenomenon in nano-meter scaled devices (nano-devices) must be quite different from the drift-diffusion model which has played a central role of the Technology Computer-Aided Design (TCAD). Our final goal is to establish new device physics (beyond the drift-diffusion model) for the fundamental study of the carrier transport in nano-devices. In this thesis, we will review the history of the basic formulation and the numerical approaches of the device physics so far, which is useful to foreknow the essential ability of today’s device modeling, and briefly survey the perspective of the future device modeling.
In particularly, the Boltzmann transport equation (BTE) is the most general equation in the history of the carrier transport study. Since BTE involves the discontinuous term that causes the equation unsolvable, the drift-diffusion model is established within the mean-field approximation for successfully removing this discontinuity [1]. In this thesis, we will review the physical model and the numerical recipes, such as the finite difference discretization, Scharfetter-Gummel discretization [2], Newton’s method, and Gummel’s iteration method [3]. In addition, we will discuss about the advantages and disadvantages of today’s device physics, and then to reveal a key point for General-Purpose Nano Device Simulator. In the PhD dissertation to be continued from this Master thesis, we will develop General-Purpose Device Simulator.

摘 要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures v
Chapter 1. Introduction 1
Chapter 2. Transport Theory 4
2.1 Boltzmann Transport Equation 4
2.2 Relaxation-Time Approximation 6
Chapter 3. Drift-Diffusion model 8
3.1 Drift-Diffusion Model Derivation 8
3.2 Continuity Equation 10
3.3 Poisson Equation 11
Chapter 4. Numerical Solutions 13
4.1 Concept of Quasi-Equilibrium 13
4.2 Discretization of the Poisson Equation 17
4.3 Control Volume 19
4.4 Scharfetter-Gummel Discretization for Continuity Equations 22
4.5 Algorithms for Device Simulation 26
4.5.1 Gummel’s Iteration Method 27
4.5.2 Newton’s Method 28
Chapter 5. Discussion and Conclusions 31
Bibliographies 34

1. T. Grasser, T.-W. Tang, H. Kosina and S. Selberherr, “A review of hydrodynamic and energy-transport models for semiconductor device simulation,” Proc. IEEE, vol. 91, no. 2, pp. 251-274, 2003.
2. D. L. Scharfetter and H. K. Gummel, “Large-signal analysis of a silicon Read diode oscillator,” IEEE Trans. Electron Devices, vol. 16, no. 1, pp. 64-77, 1969.
3. H. K. Gummel, “A self-consistent iterative scheme for one-dimensional steady state transistor calculations,” IEEE Trans. Electron Devices, vol. 11, no. 10, pp. 455-465, 1964.
4. J. E. Lilienfeld, “U.S. patents 1,745,175 (filed 1926, issued 1930), 1,877,140 (filed 1928, issued 1932), and 1,900,018 (filed 1928, issued 1933).”
5. W. Shockley, “The path to the conception of the junction transistor,” IEEE Trans. Electron Devices, vol. 23, no. 7, pp. 597-620, 1976.
6. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd Ed., John Wiley & Sons, Hoboken, New Jersey, 2007.
7. D. Kahng and M. Atalla, “U.S. patents, 3206670 & 3102230 (1960).”
8. International SEMATECH, “Intl. Technology Roadmap for Semiconductor (ITRS),” 2011.
http://www.itrs.net/
9. R. W. Dutton, “Modeling and simulation for VLSI,” Tech. Dig. IEEE IEDM, pp. 2-7, 1986.
10. R. H. Dennard, F. H. Gaensslen, H.-N. YU, V. L. Rideout, E. Bassous and A. R. LeBlanc, “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE J. Solid State Circuits, vol. 9, no. 5, pp. 256-268, 1974.
11. S. L. Teitel and J. W. Wilkins, “Ballistic transport and velocity overshoot in semiconductors: Part I—Uniform field effects,” IEEE Trans. Electron Devices, vol. 30, no. 2, pp. 150-153, 1983.
12. K. K. Ng and G. W. Taylor, “Effects of hot-carrier trapping in n- and p-channel MOSFET's,” IEEE Trans. Electron Devices, vol. 30, no. 8, pp. 871-876, 1983.
13. L. A. Akers, “Threshold voltage of a narrow-width MOSFET,” Electron. Lett., vol. 17, no. 1, pp. 49-51, 1981.
14. R. Klima, Three-Dimensional Device Simulation with Minimos-NT.
Dissertation, Technischen Universität Wien, 2002.
http://www.iue.tuwien.ac.at/phd/klima
15. C. Jacoboni and L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials,” Rev. Mod. Phys., vol. 55, no. 3, pp. 645-705, 1983.
16. L. I. Schiff, Quantum Mechanics, McGraw-Hill Inc., New York, 1955.
17. W. Shockley, Electrons and Holes in Semiconductors, D. Van Nostrand, Princeton, New Jersey, 1950.
18. J. W. Slotboom, “Computer-aided two-dimensional analysis of bipolar transistors,” IEEE Trans. Electron Devices, vol. 20, no. 8, pp. 669-679, 1973.
19. D. Vasileska, S. M. Goodnick and G. Klimeck, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation, Taylor & Francis Group, Boca Raton, Florida, 2010.
20. R. E. Bank, D. J. Rose and W. Fichtner, “Numerical methods for semiconductor device simulation,” IEEE Trans. Electron Devices, vol. 30, no. 9, pp. 1031-1041, 1983.
21. K. P. Chong and S. H. Żak, An Introduction to Optimization, 3rd Ed., John Wiley & Sons, Hoboken, New Jersey, 2008.
22. H. Watanabe, K. Kawabata, T. Ichikawa, “A tight binding method study of optimized Si-SiO2 system”, IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 3084-3091, 2010.
23. US Patent 6,954,723, “Device simulation method, device simulation system and device simulation program” by H. Watanabe and K. Matsuzawa (Issued: Oct. 11, 2005).
24. H. Watanabe and S. Takagi, “Effects of incomplete ionization of impurities in poly-Si gate and band gap narrowing on direct tunneling gate leakage current”, J. Appl. Phys., vol. 90, No. 3, pp. 1600-1607, 2001.
25. H. Watanabe, K. Matsuzawa, and S. Takagi, “Scaling effects on gate leakage current”, IEEE Trans. Electron Devices, vol. 50, no. 8, pp. 1779-1784, 2003.
26. M. J. van Dort, P. H. Woerlee, A. J. Walker, C. A. H. Juffermans and H. Lifka, “Influence of high substrate doping levels on the threshold voltage and the mobility of deep-submicrometer MOSFETs,” IEEE Trans. Electron Devices, vol. 39, no. 4, pp. 932-938, 1992.
27. W. Hänsch, Th. Vogelsang, R. Kircher and M. Orlowski, “Carrier transport near the Si/SiO2 interface of a MOSFET,” Solid State Electron., vol. 32, no. 10, pp. 839-849, 1989.
28. M. G. Ancona and G. J. Iafrate, “Quantum correction to the equation of state of an electron gas in a semiconductor,” Physical Review B (Condensed Matter), vol. 39, no. 13, pp.9536-9540, 1989.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top