跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/09 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉松傑
研究生(外文):Liu, Sung-Chieh
論文名稱:線性矩陣不等式的強健適應滑差控制應用於T-S模糊系統
論文名稱(外文):Linear Matrix Inequality Based Adaptive Sliding Control for Takagi-Sugeno Fuzzy Systems
指導教授:林昇甫林昇甫引用關係
指導教授(外文):Lin, Sheng-Fuu
學位類別:博士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:214
中文關鍵詞:T-S模糊模式範數界限變動參數變動外部擾動滑差控制適應控制
外文關鍵詞:T-S fuzzy modelsnorm-bounded uncertaintiesparameter uncertaintiesexternal disturbancessliding controladaptive control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:548
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:0
物理系統自然形成非線性,因此,所有的控制系統都是具有某些程度的非線性。過去超過二十年時間,模糊技術已經廣泛地成功被利用在非線性系統模型建立與控制器設計。近十年來,T-S模糊模型在處理複雜的非線性系統是一個廣為流傳且使用方便的工具。同樣地,對於非線性系統的模糊迴授控制設計問題已經廣泛地被研究藉由使用T-S模型,其中用簡單的局部線性模型被組合去描述非線性系統的全域行為。實際上,不可避免的不確定性也許會以一種非常複雜的方式進入到一個非線性系統模型。此不確定性也許包含模型誤差、參數變化、外部干擾和模糊近似誤差。在如此的一個情況下,模糊迴授控制設計方法也許不再運作良好。
在本論文中,我們首先提出強健適應滑差控制(包含滑差控制和適應控制)應用於具有範數界限外部干擾的T-S模糊模式,同時放寬每一個正規的局部系統模式擁有相同輸入通道的限制假設,這個限制假設是傳統可變結構模糊控制設計方法所需要的。然後,提出具有非相配參數變動和外部擾動的T-S模糊模式之強健適應滑差控制。此外,針對具有非相配參數變動和外部擾動的T-S模糊時間延遲模式,其強健適應滑差控制亦被提出。最後,利用一些例子來驗證本論文所提出方法的有效性和可行性。

Physical systems are inherently nonlinear. Thus, all control systems are nonlinear to a certain extent. Over the past two decades, fuzzy techniques have been widely and successfully exploited in nonlinear system modeling and control. In last ten years, the Takagi-Sugeno (T-S) fuzzy model is a popular and convenient tool for handling complex nonlinear systems. Correspondingly, the fuzzy feedback control design problem for a nonlinear system has been studied extensively by using the T-S model where simple local linear models are combined to describe the global behavior of the nonlinear system. In practice, the inevitable uncertainties may enter a nonlinear system model in a very complicated way. The uncertainty may include modeling errors, parameter variations, external disturbances, and fuzzy approximation errors. In such a situation, the fuzzy feedback control design methods may not work well anymore.
In this dissertation, firstly, we propose two kinds of LMI-based robust adaptive sliding control, including a robust sliding control method and a robust adaptive control method, for uncertain Takagi-Sugeno fuzzy models with norm-bounded uncertainties, and meantime relax the restrictive assumption that each nominal local system model shares the same input channel, which is required in the traditional VSS-based fuzzy control design methods. Then, two kinds of LMI-based robust adaptive sliding control are developed for uncertain T-S fuzzy models which include mismatched parameter uncertainties and external disturbances. Moreover, two kinds of LMI-based robust adaptive sliding control are proposed for the uncertain T-S fuzzy time-delay model which includes mismatched parameter uncertainties in the state matrix and norm-bounded external disturbances. Finally, some examples are used to illustrate the effectiveness and usefulness of the proposed methods in this dissertation.

Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Related Works 3
1.3 Approach 4
1.4 Organization of this Dissertation 6
Chapter 2 Foundations 8
2.1 Lyapunov Stability 8
2.2 Linear Matrix Inequality 11
Chapter 3 LMI-Based Robust Sliding Control 14
3.1 Introduction 14
3.2 Robust Sliding Control for T-S Fuzzy Systems 16
3.2.1 System Formulation 16
3.2.2 Sliding Control Design via LMI 18
3.2.3 Numerical Examples 24
3.3 Robust Sliding Control for Mismatched T-S Fuzzy Systems 46
3.3.1 System Formulation I 46
3.3.2 LMI-based Sliding Control Design I 48
3.3.3 Numerical Examples I 53
3.3.4 System Formulation II 64
3.3.5 LMI-based Sliding Control Design II 66
3.3.6 Numerical Examples II 74
3.4 Robust Sliding Control for Mismatched T-S Fuzzy Time-Delay Systems 85
3.4.1 System Formulation 85
3.4.2 Sliding Control Design via LMI 87
3.4.3 Numerical Examples 92
Chapter 4 LMI-Based Robust Adaptive Control 104
4.1 Introduction 104
4.2 Robust Adaptive Control for T-S Fuzzy Systems 106
4.2.1 System Formulation 106
4.2.2 Adaptive Control Design via LMI 107
4.2.3 Numerical Examples 114
4.3 Robust Adaptive Control for Mismatched T-S Fuzzy Systems 140
4.3.1 System Formulation I 141
4.3.2 LMI-based Adaptive Control Design I 142
4.3.3 Numerical Examples I 149
4.3.4 System Formulation II 163
4.3.5 LMI-based Adaptive Control Design II 165
4.3.6 Numerical Examples II 172
4.4 Robust Adaptive Control for Mismatched T-S Fuzzy Time-Delay Systems 186
4.4.1 System Formulation 186
4.4.2 Adaptive Control Design via LMI 188
4.4.3 Numerical Examples 193
Chapter 5 Conclusion 203
5.1 Contributions 203
5.2 Suggestions for Future Work 205
Reference 207
[1] R. Babuka, Fuzzy Modeling for Control. Boston: Kluwer Academic, 1998.
[2] M. Sugeno and K. Tanaka, “Successive identification of a fuzzy model and its application to prediction of a complex system,” Fuzzy Sets and Systems, vol. 42, no. 3, pp. 315-334, 1991.
[3] A. Peigat, Fuzzy Modeling and Control. New York: Physica-Verlag, 2001.
[4] B. Friedland, Advanced Control System Design. New Jersey: Prentice-Hall, 1996.
[5] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116–132, 1985.
[6] M. Sugeno and G. T. Kang, “Structure identification of fuzzy model,” Fuzzy sets and Systems, vol. 28, no.1, pp. 15-33, 1988.
[7] S. G. Cao, N. W. Rees, and G. Feng, “Fuzzy control of nonlinear continuous-time systems,” Proc. 35th IEEE Conf. Decision and Control, pp. 592-597, Kobe, Japan, 1996.
[8] H. Ying, “Sufficient conditions on uniform approximation of multivariate functions by general Takagi-Sugeno fuzzy systems with linear rule consequence,” IEEE Transactions on Systems, Man and Cybernetics, vol. 28, no. 4, pp. 515-521, 1998.
[9] W. Pedrycz and M. Reformat, “Rule-based modeling of nonlinear relationships,” IEEE Transactions on Fuzzy Systems, vol.5, no.2, pp. 256-269, 1997.
[10] R. Yager and D. Filev, Essentials of Fuzzy Modeling and Control. New York: John Wiley and Sons, 1994.
[11] C.Fantuzzi and R. Rovatti, “On the approximation capacities of the homogeneous Takagi-Sugeno model,” Proc. FUZZ-IEEE’96, pp. 1067-1072, 1996.
[12] K. Tanaka and H. O. Wang, Fuzzy Control System Design and Analysis: A linear Matrix Inequality Approach. New York: Wiley, 2001.
[13] M. Sugeno and G. T. Kang, “Fuzzy Modeling and Control of Multilayer Incinerator,” Fuzy Sets and Systems, vol. 18, no. 3, pp. 329-346, 1986.
[14] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control systems,” Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135-156, 1992.
[15] H. O. Wang, K. Tanaka, and M. F. Griffin, “Parallel distributed compensation of nonlinear systems by Takagi-Sugeno Fuzzy Model,” Proc. FUZZ-IEEE/IFES’95, pp. 531-538, 1995.
[16] H. O. Wang, K. Tanaka, and M. F. Griffin, “ An analytical Framework of fuzzy modeling and control of nonlinear systems: Stability and design issues,” Proc. 1995 American Control Conference, Seattle, pp. 2272-2276, 1995.
[17] H. N. Wu and H. X. Li, “New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 482-493, 2007.
[18] C. Lin, Q. G. Wang, and T. H. Lee, “Stability and stabilization of a class of fuzzy time-delay descriptor systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 4, pp. 542-551, 2006.
[19] H. Gassara, A. El Hajjaji, and M. Chaabane, “Delay-dependent stabilization conditions of T-S fuzzy systems with time-varying delay,” 17th Mediterranean Conference on Control and Automation, IEEE-MED’09, 24-26 June, Thessaloniki, Greece, pp. 19-24.
[20] Y. C. Chang, S. S. Chen, S. F. Su, and T. T. Lee, “Static output feedback stabilization for nonlinear interval time-delay systems via fuzzy control approach,” Fuzzy Sets and Systems, vol. 148, no. 3, pp. 395-410, 2004.
[21] B. Chen and X. Liu, “Delay-dependent robust control for T-S fuzzy systems with time delay,” IEEE Transactions on Fuzzy Systems, vol. 13, no. 4, pp. 544-556, 2005.
[22] X. P. Guan and C. L. Chen, “Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays,” IEEE Transactions on Fuzzy Systems, vol. 12, no. 2, pp. 236-249, 2004.
[23] K, Tanaka, T. Ikeda, and H. O. Wang, “Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: Quadratic stabilizability H∞ control theory, and linear matrix inequalities,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp.1-13, 1996.
[24] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 14-23, 1996.
[25] X. J. Ma, Z. Q. Sun, and Y. Y. He, “Analysis and design of fuzzy controller and fuzzy observer,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 1, pp. 41-51, 1998.
[26] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 250-265, 1998.
[27] P. Korba, R. Babuska, H. B. Verbruggen, and P. M. Frank, “Fuzzy gain scheduling: Controller and observer design based on Lyapunov method and convex optimization,” IEEE Transactions on Fuzzy Systems, vol. 11, no.3, pp. 285-298, 2003.
[28] S. K. Nguang and P. Shi, “H∞ fuzzy output feedback control design for nonlinear systems: An LMI approach,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 331-340, 2003.
[29] F. P. Da and S. T. He, “Exponential stability analysis and controller design of fuzzy systems with time-delay,” Journal of the Franklin Institute, vol. 348, no. 5, pp. 865-883, 2011.
[30] F. Zheng, Q. G. Wang, and T. H. Lee, “Output tracking control of MIMO fuzzy nonlinear systems using variable structure control approach,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 6, pp. 686-697, 2002.
[31] H. H. Choi, “Variable structure output feedback control design for a class of uncertain dynamic systems,” Automatica, vol. 38, no. 2, pp. 335-341, 2002.
[32] R. A. DeCarlo, “Variable structure control of nonlinear multi-variable systems: A tutorial,” Proc. IEEE, vol. 76, no. 3, pp. 212–232, 1988.
[33] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, no. 2, pp. 212–222, 1977.
[34] B. L. Walcott and S. H. Zak, “Combined observer-controller synthesis for uncertain dynamical systems with applications,” IEEE Transactions on Systems, Man and Cybernetics, vol. 18, no.1, pp. 88–104, 1988.
[35] H. H. Choi, “An LMI-based switching surface design for a class of mismatched uncertain systems,” IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1634–1638, 2003.
[36] C. C. Cheng and S. H. Chien, “Adaptive sliding mode controller design based on T-S fuzzy system models,” Automatica, vol. 42, no. 6, pp. 1005–1010, 2006.
[37] R. J. Wai, C. M. Lin, and C. F. Hsu, “Adaptive fuzzy sliding-mode control for electrical servo drive,” Fuzzy Sets and Systems, vol. 143, no. 2, pp.295-310, 2004.
[38] S. Tong and H. X. Li, “Fuzzy adaptive sliding-mode control for MIMO nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 354–360, 2003.
[39] W. S. Lin and C. S. Chen, “Robust adaptive sliding mode control using fuzzy modeling for a class of uncertain MIMO nonlinear systems,” IEE Proceedings - Control Theory and Applications, vol. 149, no. 3, pp. 193-201, 2002.
[40] J. P. Su, T. M. Chen, and C. C. Wang, “Adaptive fuzzy sliding mode control with GA-based reaching laws,” Fuzzy Sets and Systems, vol. 120, no. 1, pp. 145-158, 2001.
[41] E. M. Jafarov, “Robust sliding mode controllers design techniques for stabilization of multivariable time-delay systems with parameter perturbations and external disturbances,” International, Journal of Systems Science, vol. 36, no. 7, pp. 433–444, 2005.
[42] C. Peng, Y. C. Tian, and E. Tian, “Improved delay-dependent robust stabilization conditions of uncertain T–S fuzzy systems with time-varying delay,” Fuzzy Sets and Systems, vol. 159, no. 20, pp. 2713–2729, 2008.
[43] B. Zhang, J. Lam, S. Xu, and Z. Shu, “Robust stabilization of uncertain T–S fuzzy time-delay systems with exponential estimates,” Fuzzy Sets and Systems, vol. 160, no. 12, pp. 1720–1737, 2009.
[44] C. Lin, Q. G. Wang, and T. H. Lee, “Stabilization of uncertain fuzzy time-delay systems via variable structure control approach,” IEEE Transactions on Fuzzy Systems, vol. 13, mo. 6, pp. 787–798, 2005.
[45] H. H. Choi, “On the existence of linear sliding surfaces for a class of uncertain dynamic systems with mismatched uncertainties,” Automatica, vol. 35 , no. 10, pp. 1707-1715, 1999.
[46] F. Gouaisbaut, M. Dambrine, and J. P. Richard, “Robust control of delay systems: A sliding mode control design via LMI,” Syst. Control Lett., vol. 46, no. 4, pp. 219–230, 2002.
[47] F. Lin, Robust control design: An optimal control approach. Wiley, England, 2007.
[48] S. Boyd, L. ElGhaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM, 1994.
[49] M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 133–142, 1999.
[50] A. Weinmann, Uncertain Models and Robust Control. New York: Springer-Verlag, 1991.
[51] W. J. Cao and J. X. Xu, “Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems, “IEEE Transactions on Automatic Control, vol. 49, no. 8, pp. 1355–1360, 2004.
[52] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear control via approximate input–output linearization: The ball and beam example,” IEEE Transactions on Automatic Control, vol. 37, no. 3, pp. 392–398, 1992.
[53] H. H. Choi, “LMI-Based Sliding Surface Design for Integral Sliding Mode Control of Mismatched Uncertain Systems,” IEEE Transactions on Automatic Control, vol. 52, no. 4, pp. 736-742, 2007.
[54] H. H. Choi “Robust Stabilization of Uncertain Fuzzy Systems Using Variable Structure System Approach,” IEEE Transactions on Fuzzy Systems, vol. 16, no. 3, pp. 715-724, 2008.
[55] L. H. Keel, S. P. Bhattacharyya, and J. W. Howze. “Robust control with structured perturbations,” IEEE Transactions on Automatic Control, vol. 33, no. 1, pp. 68-78, 1988.
[56] Y. Xia and Y. Jia, “Robust sliding-mode control for uncertain time-delay systems: An LMI approach,” IEEE Transactions on Automatic Control, vol. 48, no. 6, pp. 1086–1092, 2003.
[57] H. H. Choi, “Sliding-mode output feedback control design,” IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 4047–4054, 2008.
[58] R. El-Khazali, “Variable structure robust control of uncertain time-delay systems,” Automatica, vol. 34, no. 3, pp. 327–332, 1998.
[59] S. Oucheriah, “Dynamic compensation of uncertain time-delay systems using variable structure approach,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 42, no. 8, pp. 466–469, 1995.
[60] S. Oucheriah, “Exponential stabilization of linear delayed systems using sliding-mode controllers,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 55, no. 6, pp. 826–830, 2003.
[61] R. A. DeCarlo, S. H. Zak, and G. P. Matthews, “Variable structure control of nonlinear multivariable systems: A tutorial,” Proceedings of the IEEE, vol. 76, no. 3, pp. 212–232, 1988.
[62] H. N. Wu and H. X. Li, “New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy systems with time-varying delay,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 3, pp. 482-493, 2007.
[63] B. Chen, X. Liu, C. Lin, and K. Liu, “Robust H∞ control of Takagi–Sugeno fuzzy systems with state and input time delays,” Fuzzy Sets and Systems, vol. 160, no. 4, pp. 403–422, 2009.
[64] H. H. Choi, “Adaptive controller design for uncertain fuzzy systems using variable structure control approach.” Automatica, vol. 45, no. 11, pp. 2646-2650, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊