跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/08 00:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭喆夫
研究生(外文):Cheng, Che-Fu
論文名稱:印刷電路板內層之自動缺陷偵測與分類系統
論文名稱(外文):Automatic Defect Detection and Classification System on Printed Circuit Board Inner Layer
指導教授:王啟旭
指導教授(外文):Wang, Chi-Hsu
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電控工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:48
中文關鍵詞:缺陷偵測缺陷分類
外文關鍵詞:defect detectiondefect classification
相關次數:
  • 被引用被引用:1
  • 點閱點閱:508
  • 評分評分:
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
本論文實現了一套結合缺陷偵測與分類的自動化缺陷分類系統。缺陷偵測的部分,我們必須先利用MAD的方法將待測影像與參考影像對齊,其中參考影像為不包含缺陷的影像。MAD是利用計算兩張影像重疊區域的平均誤差來找出兩張影像之間的平移量,進而對齊待測影像與參考影像。接著,我們將對齊後的待測影像與對齊後的參考影像相減,以獲得缺陷的區域。最後考量到在相減影像中會有一些微小的雜訊,我們設定一個閥值來過濾這些較小的雜訊。
缺陷分類的部分,我們必須找出每一個缺陷的外輪廓,並從外輪廓中抽取出「邊界狀態轉換次數」與「邊界狀態」兩個特徵,除此之外,我們也從影像相減的過程中抽取出「缺陷狀態」的特徵。藉由這三種不同的特徵,我們可以將缺陷分成以下八類:斷開(open)、缺口(mouse bite)、針孔(pinhole)、缺少導體(missing conductor)、短路(short)、突出(spur)、缺洞(missing hole)與多餘的銅(excess copper)。

In this thesis, we implement an automatic defect classification system that combines the detection and classification of the defect on a PCB inner layer. In defect detection part, at first, we have to use the MAD method to align the test images to the reference image which contains no defects. MAD method computes the mean absolute distortion of the two images overlapping area to find the displacement between these two images. Then we subtract the aligned test image from aligned reference images to obtain defects. Finally, there are some noises with small size in the subtracted image. Therefore, we remove these noises by setting a threshold.
In defect classification part, we have to find the outer boundary of each defect and then we extract two features, “number of state transition,” and “boundary state,” from the outer boundary. Moreover, we also extract the “defect state” feature in the image subtraction process. By using these three different features, we can classify defects into the following eight types: “open,” “mouse bite,” “pinhole,” “missing conductor,” “short,” “spur,” “missing hole,” and “excess copper.”

摘要……………………………………………………………………………….i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
Content………………………………………………………………………….iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Defect Detection 4
1.3 Defect Classification 5
1.4 Thesis Outline 6
Chapter 2 Defect Detection on Printed Circuit Board Inner Layers 7
2.1 Overall System Architecture and Processes 7
2.1.1 Non-periodic Image 7
2.1.2 Periodic Image 9
2.2 Image Alignment 10
2.2.1 Non-periodic Image 10
2.2.2 Periodic Image 14
2.3 Defect Detection 14
2.3.1 Image Binarization 14
2.3.2 Image Subtraction 15
2.4 Defect Segmentation 16
2.4.1 Neighbors of a Pixel 16
2.4.2 Labeling of Connected Regions 17
2.5 Noise Removal 19
Chapter 3 Defect Classification on Printed Circuit Board Inner Layers 21
3.1 Boundary Tracing 22
3.1.1 Inner Boundary Tracing 22
3.1.2 Outer Boundary Tracing 24
3.2 Feature Extraction 24
3.3 Classification Method 27
Chapter 4 Experimental Results 30
4.1 Defect Detection 30
4.1.1 Non-periodic Image 30
4.1.2 Periodic Image 35
4.2 Defect Classification 39
4.2.1 Non-periodic Image 39
4.2.2 Periodic Image 42
Chapter 5 Conclusion 46

References………………………………………………………………………………………………………….47

[1] C. H. Wang, W. Kuo, and H. Bensmail, “Detection and classification of defect patterns on semiconductor wafers,” IIE Trans., vol. 39, no. 12, pp. 1059–1068, 2006.
[2] F. L. Chen and S. F. Liu, “A neural-network approach to recognize defect spatial pattern in semiconductor fabrication,” IEEE Trans. Semiconductor Manufacturing, vol. 13, pp. 366–373, Aug. 2000.
[3] H. Feng, J. Ye, and R. F. W. Pease, “Self-inspection of IC pattern defects,” Journal of Vacuum Science &; Technology, vol. 22, pp. 3386–3389, Nov. 2004.
[4] M. Luria, M. Moran, D. Yaffe, and J. Kawski, “DCS-1: A fuzzy logic expert system for automatic defect classification of semiconductor wafer defects,” in Proc. 3rd IEEE Conf. Fuzzy Syst.—Part III, vol. 3, pp. 2100–2106, 1994.
[5] R. Gonzales and R. Woods, Digital Image Processing, 3rd ed. Pearson Education International, pp. 589–591, 2008.
[6] A. N. Ng, E. Y. Lam, R. Chung, K. S. Fung, and W. H. Leung, “Reference-free detection of semiconductor assembly defect,” in Proc. SPIE, vol. 5679, pp. 27–35, 2005.
[7] H. Feng, J. Ye, and R. F. W. Pease, “Reconstruction of pattern images from scanning electron microscope images,” Journal of Vacuum Science &; Technology, vol. 23, pp. 3080–3084, 2005.
[8] M. Sonka, V. Hlavac, R. Boyle, Image Processing, Analysis, and Machine Vision, 3rd ed. International Student Edition, pp. 191–193, 2008.
[9] H. Rau, C.H. Wu, “Automatic optical inspection for detecting defects on printed circuit board inner layers,” International journal of manufacturing technology, vol. 25, pp.940–946, 2005.
[10] S. F. Liu, F. L. Chen, and W. B. Lu, “Wafer bin map recognition using a neural network approach,” Int. J. Production Res., vol. 40, no. 10, pp. 2207–2223, 2002.
[11] P. B. Chou, A. R. Rao, M. C. Sturzenbecker, F. Y. Wu, and V. H. Brecher, “Automatic defect classification for semiconductor manufacturing,” Mach. Vision Applicat., vol. 9, no. 4, pp. 210–214, 1997.
[12] A. Ben-Porath, T. Hayes, and A. Skumanich, “Advanced process development and control based on a fully automated SEM with ADC,” in Proc. Advanced Semiconductor Manufacturing Conf., pp. 275–280, 1999.
[13] R. L. Guldi, “In-line defect reduction from a historical perspective and its implications for future integrated circuit manufacturing,” IEEE Trans. Semicond. Manuf., vol. 17, no. 4, pp. 629–640, Nov. 2004.
[14] Honda, Toshifumi, et al. “Fuzzy selective voting classifier with defect extraction based on comparison within an image,” International Symposium on Multispectral Image Processing and Pattern Recognition. International Society for Optics and Photonics, 2007.
[15] Gleason, Shaun S., et al. “Detection of semiconductor defects using a novel fractal encoding algorithm,” Design, Process Integration, and Characterization for Microelectronics. International Society for Optics and Photonics, 2002.
[16] H. Feng, J. Ye, and R. F. Pease, “Self-inspection of integrated circuits pattern defects using support vector machines,” Journal of vacuum &; science technology, vol. 23, no. 6, pp. 3085–3089, Nov. 2005.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊