跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 16:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉庭鈞
論文名稱:FC-72流過一加熱面並以步階方式降低質量流率之流動沸騰熱傳和氣泡特徵研究
論文名稱(外文):Transient Flow Boiling Heat Transfer and Associated Bubble Characteristics of FC-72 over a Heated Plate due to a Step Degrease in Mass Flow Rate
指導教授:林清發林清發引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:76
中文關鍵詞:流動沸騰介電液FC-72氣泡特徵流量降低
外文關鍵詞:Flow boilingFC-72Bubble characteristicMass flux reduction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本研究以實驗方式探討FC-72介電冷卻液在截面寬為50毫米、高8毫米之水平矩形流道中於流動沸騰時進行質量流率驟降,以探討質量流率的改變如何影響暫態強制對流沸騰熱傳及相關氣泡特徵。加熱銅板埋置於測試段之底板中央,其長寬尺寸皆為10毫米。在本次實驗中,固定熱通量下,不同程度的流量下降對暫態沸騰熱傳特性及氣泡特徵之影響將會被詳細的探討。在實驗參數上,介電液FC-72之質量流率改變範圍從300到160kg/m2s,加熱通量為1.0到10 W/cm2。

實驗結果發現,於流動沸騰時,隨著質量流率的下降,加熱的銅板表面壁溫會有下降的現象。當流量改變的程度越大,壁溫下降的幅度越大。值得注意的是,當流量驟降之後,由於測試段入口處之壓力值會隨之下降,此時測試段入口之介電液FC-72溫度保持不變,而使得入口處介電液狀態由飽和態轉變為過熱態。而實驗結果顯示,當流量改變的程度越大,所造成的入口液體過熱度亦越大。除此之外,隨著質量流率的下降,加熱銅板表面氣泡的脫離直徑及成核址密度會隨著時間遞增,而氣泡的脫離頻率則隨著時間遞減。由於氣泡特徵的改變所造成之潛熱熱傳量的增加,最終導致加熱表面壁溫下降的結果。我們亦觀察到當流量改變的程度越大,對氣泡特徵改變的程度也越大。

An experiment is carried out in the present study to investigate transient flow boiling heat transfer and associated bubble characteristics for coolant FC-72 flowing over a small heated copper plate flush mounted on the bottom of a horizontal rectangular channel due to a step decrease in the coolant mass flow rate. In the experiment, the effects of the levels of the step change in the coolant mass flux and imposed heat flux on the time variations of the measured transient flow boiling heat transfer and bubble characteristics are examined in detail. During the tests, the coolant mass flux G ranges from 300 to 160 kg/m2s for the imposed heat flux q varied from 1.0 to 10 W/cm2.
The experimental results show that the heated surface temperature decreases with time following a reduction in the coolant mass flux in the transient flow boiling. The effect is more pronounced for a larger reduction in G. Besides, it is noted in the transient flow that the inlet liquid condition changes from a saturated state to a superheated state during the mass flux reduction because of the associated drop in the inlet pressure. Moreover, a larger reduction of the coolant mass flux results in a larger increase in the inlet liquid superheating. Furthermore, as the coolant mass flux reduces with time both the size of the departing bubbles and active nucleation site density increase, but the bubble departure frequency decreases. This results in an increase in latent heat transfer due to the mass flux reduction and hence a drop in the heated surface temperature. We also note that a larger increase in the inlet liquid superheating causes stronger changes in these quantities.
ABSTRACT (CHINESE) i
ABSTRACT (ENGLISH) ii
CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE xi
CHAPTER 1 INTRODUCTION 1
1.1 Motivation of the Present Study 1
1.2 Literature Review 2
1.2.2 Transient single-phase forced convection heat transfer 4
1.2.3 Transient flow boiling heat transfer 5
1.2.4 Bubble Characteristics 7
1.3 Objective of This Study 9
CHAPTER 2 EXPERIMENTAL APPARATUS AND PROCEDURES 13
2.1 Degassing Unit 13
2.2 Coolant Loop 14
2.3 Test Section 15
2.4 Hot-water Loop 16
2.5 Cold-water Loop 16
2.6 Programmable DC Power Supply 16
2.7 Data Acquisition 17
2.8 Optical Measurement Technique 17
2.9 Experimental Procedures 18
2.10 Experimental Parameters 19
CHAPTER 3 DATA REDUCTION 27
3.1 Flow Boiling Heat Transfer Coefficient 27
3.2 Flow Boiling Bubble Characteristics 29
3.3 Uncertainty Analysis 30
CHAPTER 4 TRANSIENT FLOW BOILONG OF FC-72 OVER A
SMALL HEATED COPPER PLATE DUE TO A
STEP CHANGE IN MASS FLOW RATE 32
4.1 Single-phase Liquid Convective Heat Transfer 33
4.2 Transient Flow Boiling Heat Transfer Characteristics 33
4.3 Transient Bubble Characteristics in Flow Boiling 36
CHAPTER 5 CONCLUDING REMARKS 69
REFERENCES 71


1. R. E. Simons, “Thermal Management of Electronic Packages,” Solid State Technology (1983) 131-137.
2. K. R. Samant and T. W. Simon, “Heat Transfer from a Small Heated Region to R-113 and FC-72,” Transactions of the ASME. C, Journal of Heat Transfer 111 (1989) 1053-1059.
3. S. V. Garimella and P. A. Eibeck, “Heat Transfer Characteristics of an Array of Protruding Elements in Single Phase Forced Convection,” International Journal of Heat and Mass Transfer 33 (12) (1990) 2659-2669.
4. F. P. Incropera, J. S. Kerby, D. F. Moffatt and S. Ramadhyani, “Convection Heat Transfer from Discrete Heat Sources in a Rectangular Channel,” International Journal of Heat and Mass Transfer 29 (7) (1986) 1051-1058.
5. T. J. Heindel, F. P. Incropera, and S. Ramadhyani, “Liquid Immersion Cooling of a Longitudinal Array of Discrete Heat Sources in Protruding Substrates : I – Single-Phase Convection,” Transactions of the ASME Journal of Electronic Package 114 (1992) 55-62.
6. T. J. Heindel, S. Ramadhyani and F. P. Incropera, ”Liquid Immersion Cooling of a Longitudinal Array of Discrete Heat Sources in Protruding Substrates : II – Forced Convection Boiling,” Transactions of the ASME Journal of Electronic Packaging 114 (1992) 63-70.
7. I. Mudawar and D. E. Maddox, “Enhancement of Critical Heat Flux From High Power Microelectronic Heat Sources in a Flow Channel,” Transactions of the ASME Journal of Electronic Package 112 (1990) 241-248.
8. C. O. Gersey and I. Mudawar, “Effects of Orientation on Critical Heat Flux From Chip Arrays During Flow Boiling,” Transactions of the ASME Journal of electronic packaging 114 (1992) 290-299.
9. T. C. Willingham and I. Mudawar, “Forced-Convection Boiling and Critical Heat Flux from a Linear Array of Discrete Heat Sources,” International Journal of Heat and Mass Transfer 35 (11) (1992) 2879-2890.
10. C. P. Tso, K. W. Tou and G. P. Xu, “Flow Boiling Critical Heat Flux of FC-72 from Flush-mounted and Protruded Simulated Chips in a Vertical Rectangular
Channel,” International Journal of Multiphase Flow 26 (2000) 351-365.
11. R. Yun, Y. Kim, and M. S. Kim, “Flow boiling heat transfer of carbon dioxide in horizontal mini tubes,” International Journal of Heat and Fluid Flow 26 (2005) 801-809.
12. M. Girault and D. Petit, “Resolution of Linear Inverse Forced Convection Problems Using Model Reduction by the Modal Identification Method: Application to Trubulent Flow in parralle-Plate Duct,” International Journal of Heat and Mass Transfer 47 (2004) 3909-3925.
13. H.Bhowmik and K.W. Tou, “Study of transient forced convection heat transfer from Discrete Heat Sources in a FC-72 Cooled Vertical Channel,” International Journal of Thermal Sciences 44 (2005) 499-505.
14. H. Bhowmik and K.W. Tou, “Experimental study of transient natural convection heat transfer from simulated electronic chips,” Experimental Thermal and Fluid Science 29 2005 485-492).
15. H. Bhowmik and K.W. Tou, “Thermal Behavior of Simulated Chips During Power-off Transient Period,” Electronics Packaging Technology congerence2003
16. I. Kataoka, A. Serizawa and A. Sakurai, “Transient Boiling Heat Transfer Under Forced Convection,” International Journal of Heat and Mass Transfer 26 (1983) 583-595.
17. S. Lin, P.A. Kew and K. Cornwell, “Two-Phase Heat Transfer to a Refrigerant in a 1 mm Diameter Tube,” International Journal of Refrigeration 24 (2001) 51-56.
18. T. Otsuji and A. Kurosawa, “Critical Heat Flux of Forced Convection Boiling in an Oscillating Acceleration Field : I – General Trends,” Nuclear Engineering and
Design 71 (1982) 15-26.
19. T. Otsuji and A. Kurosawa, “Critical Heat Flux of Forced Convection Boiling in an Oscillating Acceleration Field : II – Contribution of Flow Oscillation,” Nuclear Engineering and Design 76 (1983) 13-21.
20. S. Kakac, T. N. Veziroglu, M. M. Padki, L. Q. Fu, and X. J. Chen, “Investigation of Thermal Instabilities in a Forced Convection Upward Boiling System,” Experimental Thermal and Fluid Science 3 (1990) 191-201.
21. M. M. Padki, H. T. Liu, and Kakac, “Two-Phase Flow Pressure-Drop type and Thermal Oscillations,” International Journal of Heat and Fluid Flow 12 (1991) 240-248.
22. Y. Ding, S. Kakac, and X. J. Chen, “Dynamic Instabilities of Boiling Two-Phase Flow in a Single Horizontal Channel,” Experimental Thermal and Fluid Science 11 (1995) 327-342.
23. O. Comakli, S. Karsli, and M. Yilmaz, “Experimental investigation of two phase flow instabilities in a horizontal in-tube boiling system,” Energy Conversion and Management 43 (2002) 249-268.
24. P. R. Mawasha and R. J. Gross, “Periodic Oscillations in a Horizontal Single Boiling Channel with Thermal Wall Capacity,” International Journal of Heat and Fluid Flow 22 (2001) 643-649.
25. P. R. Mawasha, R. J. Gross, and D. D. Quinn, “Pressure-Drop Oscillations in a Horizontal Single Boiling Channel,” Heat Transfer Engineering 22 (2001) 26-34.
26. Q. Wang, X. J. Chen, S. Kakac, and Y. Ding, “Boiling Onset Oscillation : a new type of Dynamic Instability in a Forced-Convection Upflow Boiling System,” International Journal of Heat and Fluid Flow 17( 1996) 418-423.
27. D. Brutin, F. Topin, and L. Tadrist, “Experimental Study of Unsteady Convective Boiling in Heated Minichannels,” International Journal of Heat and Mass Transfer 46 (2003) 2957-2965.
28. D. Brutin and L. Tadrist, “Pressure Drop and Heat Transfer Analysis of Flow Boiling in a Minichannel : Influence of the Inlet Condition on Two-phase Flow Stability,” International Journal of Heat and Mass Transfer 47 (2004) 2365-2377.
29. J. Shuai, R. Kulenovic, and M. Groll, “Pressure Drop Oscillations and Flow Patterns for Flow Boiling of Water in Narrow Channel,” Proceedings of International Conference on Energy and the Environment, Shanghai, China, May 22-24, 2003.
30. S. H. Chang, I. C. Bang and Won-Pil Baek, “A Photographic Study on the Near-wall Bubble Behavier in Subcooled Flow Boiling,” Int. J. Therm. 41 (2002) 609-618.
31. I. C. Bang, S. H. Chang and Won-Pil Baek, “Visualization of the Subcooled Flow Boiling of R-134a in a Vertical Rectangular Channel with an Electrically Heated Wall,” International Journal of Heat and Mass Transfer 47 (2004) 4349-4363.
32. S. G. Kandlikar, “Bubble Nucleation and Growth Characteristics in Subcooed Flow Boiling of Water,” National Heat Transfer Conference HTD-Vol. 342 4 (1997) 11-18
33. R. Maurus, V. Ilchenko and T. Sattelmayer, “Study of the Bubble Characteristics and the Local Void Fraction in Subcooled Flow Boiling Using Digital Imaging and Analyzing Techniques,” Experimental Thermal and Fluid Science 26 (2002) 147-155.
34. R. Maurus, V. Ilchenko and T. Sattelmayer, “Automated high-speed vedio analysis of the bubble dynamics in subcooled flow boiling,” International Journal of Heat and Fluid Flow 25 (2004) 149-158.
35. R. Maurus and Sattelmayer, “Bubble and boundary layer behavior in subcooled flow boiling,” International Journal of Thermal Sciences 45 (2006) 257-268.
36. G. E. Thorncroft, J. F. Klausner and R. Mei, “An Experimental Investigation of Bubble Growth and Detachment in Vertical Upflow and Downflow Boiling,” International Journal of Heat and Mass Transfer 41 (1998) 3857-3871.
37. T. Okawa, T. Ishida, I. Kataoka, and M. Mori, “An experimental study on bubble rise path after the departure from a nucleation site in vertical upflow boiling,” Experimental Thermal and Fluid Science 29 (2005) 287-294.
38. T. Okawa, T. Ishida, I. Kataoka, and M. Mori, “Bubble rise characteristics after the departure from a nucleation site in vertical upflow boiling of subcooled water,” Nuclear Engineering and Design 235 (2005) 1149-1161.
39. T. Okawa, T. Ishida, I. Kataoka, and M. Mori, “On the rise paths of single vapor bubbles after the departure from nucleation sites in subcooled upflow boiling,” 392 International Journal of Heat and Mass Transfer 48 (2005) 4446-4459.
40. R. Situ, Y. Mi, M. Ishii, and M. Mori, “Photographic study of bubble behaviors in forced convection subcooled boiling,” International Journal of Heat and Mass Transfer 47 (2004) 3659-3667
41. R. Situ, T. Hibiki, M. Ishii, and M. Mori, “Bubble lift-off size in forced convection subcooled boiling flow,” International Journal of Heat and Mass Transfer 48 (2005) 5536-5548
42. C. P. Yin, Y. Y. Yan, T. F. Lin and B. C. Yang, “Subcooled Flow Boiling Heat Transfer of R-134a and Bubble Characteristics in a Horizontal Annular Duct,” International Journal of Heat and Mass Transfer 43 (2000) 1885-1896.

43. S. J. Kline and F. A. McClintock, “describing uncertainties in single-sample experiments,” Mech. Engineering 75 (1953) 3-8.
44. J. R. Thome, Enhanced Boiling Heat Transfer, Hemisphere Publishing Corporation, New York, 1990, Chapter 6, 98-117.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top