跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 21:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范瑞杰
研究生(外文):Venkatachalam Rajeshkumar
論文名稱:過渡金屬催化含氮化合物與碳六十的反應探討:合成創新的碳六十衍生物
論文名稱(外文):Transition-Metal-Catalyzed Reactivity Study of N-containing Compounds with [60]Fullerene: Synthesis of Novel [60]Fullerene Derivatives
指導教授:莊士卿
指導教授(外文):Chuang, Shih-Ching
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:270
中文關鍵詞:過渡金屬碳60
外文關鍵詞:Transition-Metal[60]Fullerene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Developments of three new methods for fullerene functionalization through transition metal catalysis are presented.
Palladium-catalyzed heteroannulation of [60]fullerene with N-substituted benzamides, which proceeds through direct sp2 C–H bond activation to form 7-membered ring pallada-intermediate with C60, led to formation of [60]fulleroisoquinolinones in moderate to good yields 8–64% based on recovered C60. C–H bond activation is highly regioselective in this reaction.
An efficient palladium-catalyzed chelating-group-assisted C−H activation of N-sulfonyl-2-aminobiaryls and their annulations with [60]fullerene via sequential C–C and C–N bond formation at room temperature to afford [60]fulleroazepines is demonstrated for the first time. The formation [60]fulleroazepines is highly regioselective and tolerance to both electron-withdrawing and electron-donating groups on the aryl moiety with good monofuctionalized fullerene reaction yield (up to 51% isolated yield and 85% based on recovered C60).
A system with ingredients of late transition-metal halides, phosphines, water and reducing agent in 1,2-dichlorobenzene can efficiently catalyze the intermolecular reductive coupling of [60]fullerene with N-sulfonylaldimines to afford novel 1,2-hydrobenzylated [60]fullerene derivatives. A control experiment in the absence of aldimines produced C60H2, which proved that the reaction could proceed via a [60]fullerene metal complex, M(η2-C60)(ligand). An isotope labeling experiment with D2O as deuterio source resulted in deuteriobenzylation with deterium bonded to the sp3-carbon of C60, providing evidence of a five-membered azametallacycle intermediate. Evaluation of the scope of reductive coupling reaction with versatile aldimines gave access to the novel hydrobenzylated products. All the reductive coupling products were completely characterized by infrared and NMR spectroscopy and ESI-mass spectrometry. Based on these results, a possible reaction mechanism is proposed.
Synthesized series of open-cage fullerene derivatives possessing with N-alkylmaleimide moiety as n-type materials for organic solar cells.

Developments of three new methods for fullerene functionalization through transition metal catalysis are presented.
Palladium-catalyzed heteroannulation of [60]fullerene with N-substituted benzamides, which proceeds through direct sp2 C–H bond activation to form 7-membered ring pallada-intermediate with C60, led to formation of [60]fulleroisoquinolinones in moderate to good yields 8–64% based on recovered C60. C–H bond activation is highly regioselective in this reaction.
An efficient palladium-catalyzed chelating-group-assisted C−H activation of N-sulfonyl-2-aminobiaryls and their annulations with [60]fullerene via sequential C–C and C–N bond formation at room temperature to afford [60]fulleroazepines is demonstrated for the first time. The formation [60]fulleroazepines is highly regioselective and tolerance to both electron-withdrawing and electron-donating groups on the aryl moiety with good monofuctionalized fullerene reaction yield (up to 51% isolated yield and 85% based on recovered C60).
A system with ingredients of late transition-metal halides, phosphines, water and reducing agent in 1,2-dichlorobenzene can efficiently catalyze the intermolecular reductive coupling of [60]fullerene with N-sulfonylaldimines to afford novel 1,2-hydrobenzylated [60]fullerene derivatives. A control experiment in the absence of aldimines produced C60H2, which proved that the reaction could proceed via a [60]fullerene metal complex, M(η2-C60)(ligand). An isotope labeling experiment with D2O as deuterio source resulted in deuteriobenzylation with deterium bonded to the sp3-carbon of C60, providing evidence of a five-membered azametallacycle intermediate. Evaluation of the scope of reductive coupling reaction with versatile aldimines gave access to the novel hydrobenzylated products. All the reductive coupling products were completely characterized by infrared and NMR spectroscopy and ESI-mass spectrometry. Based on these results, a possible reaction mechanism is proposed.
Synthesized series of open-cage fullerene derivatives possessing with N-alkylmaleimide moiety as n-type materials for organic solar cells.

Table of Contents
Chapter 1 1
Introduction 1
Discovery of the fullerene 1
1.2 Solubility of C60 fullerene 2
1.3 Characterizations of the fullerene 3
1.4 General reactivity of C60 fullerene 5
1.4.1 Cycloaddition Reactions 5
1.4.2 [4+2] Cycloaddition Reactions 5
1.4.3 [3+2] Cycloaddition Reaction 6
1.4.4 [2+2] Cycloaddition Reaction 7
1.4.5 [2+1] Cycloaddition Reaction 8
1.5 Transition metal complexes of C60 fullerene 9
1.5.1 Iridium Complexes 10
1.5.2 Rhodium and Zirconium complexes14b 11
1.6 Nucleophilic reactions 12
Hydroalkylation and hydroarylation reaction 12
1.6.1 Bingel reaction 13
1.7 Radial reactions 13
1.7.1 Reaction of C60 with nitriles 13
1.7.2 Reactions with ketones 14
1.7.3 Reactions with ethers 15
Recent literature work on transition metal catalyzed functionalization on [60]fullerene 16
1.8.1 Palladium catalyzed reactions 16
1.8.2 Rhodium mediated reaction 18
1.8.3 Cobalt mediated reactions 19
1.9 Applications of fullerene derivatives 20
1.9.1 Biological applications 20
1.9.2 Applications in material sciences 21
PCBM derivatives and ICBA 21
1.9.3 Fulleroisoquinolinones 22
1.10 Ortho C–H bond activation and functionalization in organic synthesis 23
1.10.1 Different directing groups 23
1.10.2 Amide directing group 24
1.10.3 Carbonyl directing group 24
1.10.4 Carboxylic acid directing group 25
1.10.5 Oxime ether as directing group 26
1.10.6 Imine directing group 26
1.10.7 Anilide as a directing group 26
1.11 References 34
Chapter 2 38
2.1 Introduction 39
2.1.1 Rhodium mediated alkyne insertion of benzamides 39
2.1.2 Ruthenium mediated alkyne insertion 40
2.1.3 Arylation and cyclization 41
2.1.4 Ortho Olefination of Benzamides 42
2.1.5 Carbonyl insertion 43
2.2 Annulation of Benzamides with [60]Fullerene through Palladium(II)-Catalyzed C–H Bond Activation 44
2.2.1 Results and discussion 45
2.3 Characterization of fulleroisoquinolinones 54
2.4 Proposed mechanism for the formation of fulleroisoquinolinones 59
2.5 Electrochemical properties of different fullerene fused heterocyclic compounds 60
2.6 Mechanism for the formation of fulleroindoles 65
2.7 Crystallographic data of compound 2l. 66
2.8 Conclusion 71
2.9 General methods 72
2.10 Experimental section 73
2.11 References 88
Chapter 3 89
3.1 Introduction 90
3.2 The importance of 2-aminobiaryls in organic synthesis 91
3.2.1 Synthesis of phenanthridine derivatives 92
3.2.2 Synthesis of carbazoles 93
3.3 Azepine synthesis in small molecules 95
3.4 Palladium-Catalyzed and Hybrid Acids-Assisted Synthesis of [60]Fulleroazepines in One Pot Under Mild Conditions: Annulation of N-sulfonyl-2-aminobiaryls with [60]Fullerene through Sequential C–H Bond Activation, C–C and C–N Bond Formation 97
3.5 Retrosynthetic analysis 99
3.6 Optimization studies for the synthesis of [60]Fulleroazepines 100
3.7 Study of the reaction scope 102
3.8 Characterization of fulleroazepine 109
3.9 Mechanistic considerations for the formation of [60]fulleroazepines 114
3.10 Electeochemical studies of [60]fulleroazepine derivatives 115
3.11Conclusion 117
3.13 Experimental section 119
3.13 References 161
Chapter 4 162
4. Introduction 164
4.1 Nickel catalyzed Reductive coupling reactions 164
4.1.1 Alkyne/ imine coupling reactions 165
4.1.2Alkyne/ aldehyde coupling reactions 166
4.1.3 Alkene/ imine coupling reactions 166
4.2 Nickel catalyzed reaction of C60 167
4.3 Co-catalyzed hydroalkylation of C60 169
4.4 Evolution of Late Transition-Metal-Catalyzed Intermolecular Reductive Coupling Reaction of [60]Fullerene and N-sulfonylaldimines: Competing Formation of Hydrobenzylated [60]Fullerenes and 1,2-Dihydrofullerene 170
4.5 Optimization studies for Reductive Coupling of [60]Fullerene and N-Sulfonyl Aldimines 172
4.6 Reaction scope studies 177
4.7 Mechanistic evidence 181
4.8 Deuterium labeling experiment 182
4.9 Mechanistic consideration 185
4.10 Characterization of hydrobenzylated fullerene derivatives 187
4.11 Conclusion 191
4.12 Experimental section 192
4.12.1 Synthetic procedures for the catalysts 192
4.12.1.1 Synthesis of [Cp*RhCl2]2 192
4.12.1.2 Synthesis of [Cp*IrCl2]2 192
4.12.1.3 Bis(triphenylphosphine)palladium(II) dichloride 193
4.12.1.4 Synthetic procedure for nickel complexes 193
4.12.1.5 Synthesis of NiBr2(P(p-tolyl)3)2 193
4.12.1.6 Synthetic procedure for NiBr2[phen] 194
4.12.1.7 Synthetic procedure for NiBr2(PPh3)2 194
4.12.1.8 Synthetic procedure for NiBr2(dppe) 194
4.12.1.9 Synthetic procedure for CoI2(PPh3)2 195
4.14 References 217
Chapter 5 221
Synthesis of Open-Cage Fullerene Derivatives Possessing with Maleimide and Solubilizing Alkyl Functionality 221
5.1 Introduction 221
5.2 Results and discussion 227
5.3 Electeochemical property studies of open cage fullerene derivatives 11-15 229
5.4 Characterization of open-cage fullerene derivatives 233
5.5 Conclusion 233
5.6 Experimental section 234
5.7 References 266
1.11 References
1) Ruoff, R. S.; Tse, D. S.; Malhotra, R.; Lorents, D. C. J. Phys Chem. 1993, 97, 3379–3383.
2) Cyvin, S. J.; Brendsdal, E.; Cyvin, B. N.; Brunvoll, J. Chem. Phys. Lett. 1988, 143, 377–380.
3) Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.; Fostiropoulos, K.; Huffman, D. R.; Krätschmer, W.; Rubin, Y.; Schriver, K. E.; Sensharma, D.; Whetten, R. L. J. Phys. Chem. 1990, 94, 8630–8633.
4) Tsuda, M.; Ishida, T.; Nogami, T.; Kurono, S.; Ohashi, M. J. Chem. Soc., Chem. Commun. 1993, 1296–1298.
5) An, Y.-Z.; Anderson, J. L.; Rubin, Y. J. Org. Chem. 1993, 58, 4799–4801.
6) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115, 9798–9799.
7) Meier, M. S.; Poplawskat, M.; J. Org. Chem. 1993, 58, 4524–4525.
8) Hoke II, S. H.; Molstad, J.; Dilettato, D.; Jay, M. J.; Carlson, D.; Kahr, B.; Cooks, R. G. J. Org. Chem. 1992, 57, 5069–5071.
9) Zhang, X.; Romero, A.; Foote, C. S. J. Am. Chem. Soc. 1993, 115, 11024–11025.
10) Vasella, A.; Uhlmann, P.; Waldraff, C. A. A.; Diederich, F.; Thilgen, C. Angew. Chem. Int. Ed. Engl. 1992, 31, 1388–1390.
11) Fagan, P. J.; Calabrese, J. C.; Malone, B. Acc. Chem. Res. 1992, 25, 134–142.
12) Koefod, R. S.; Hudgens, M. F.; Shapley, J. R. J. Am. Chem. Soc. 1991, 113, 8957–8958.
13) Balch, A. L.; Catalano, V. J.; Lee, J. W. Inorg. Chem. 1991, 30, 3980–3981.
14) a) Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. J. Am. Chem. Soc. 1992, 114, 10984–10985. b) Ballenweg, S.; Gleiter, R.; Kratschmer, W. Tetrahedron Lett. 1993, 34, 3737–3740.
15) Hirsch, A.; Soi, A.; Karfunkel, H. R. Angew. Chem. Int. Ed. Engl. 1992, 31, 766–768.
16) Bingel, C. Chem. Ber. 1993, 126, 1957–1959.
17) Li, F.-B.; Liu, T.-X.; Wang, G.-W. J. Org. Chem. 2008, 73, 6417–6420.
18) Li, F.–B.; Liu, T.-X.; You, X.; Wang, G.-W. Org. Lett. 2010, 12, 3258–3261.
19) Tzirakis, M. D.; Orfanopoulos, M. Org. Lett. 2008, 10, 873–876.
20) Wang, G.-W. J. Org. Chem. 2009, 74, 4426–4428.
21) Wang. G.-W. Org. Lett. 2009, 11, 4334–4337.
22) Mori, S.; Nambo, M.; Chi, L.-C.; Bouffard, J.; Itami, K. Org. Lett. 2008, 10, 4609–4612.
23) Nair, V.; Sethumadhavan, D.; Sheela, K. C.; Nair, S. M.; Eigendorf, G. K.; Tetrahedron 2002, 58, 3009–3013.
24) Nambo, M.; Noyori, R.; Itami, K. J. Am. Chem. Soc. 2007, 129, 8080–8081.
25) Martin, N.; Altable, M.; Filippone, S.; Martin-Domenech, A.; Poater, A.; Sola, M. Chem.—Eur. J. 2005, 11, 2716–2729.
26) (a) Jensen, A. W.; Wilson, S. R.; Schuster, D. I. Bioorg. Med. Chem. 1996, 4, 767-779. (b) Da Ros, T.; Prato, M. Chem Commun. 1999, 663-669. (c) Prato, M. Org. Lett. 2000, 2, 3955-3958.
27) (a) He, Y; Chen, H.-Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377–1382. (b) Chen, C.-P.; Luo, C.; Ting, C.; Chuang, S.-C. Chem. Commun. 2011, 47, 1845–1847.
28) (a) Lyons, T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147–1169; (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094–5115.
29) Zhu, C.; Xie, W.; Falck, J. R. Chem. Eur. J. 2011, 17, 12591–12595.
30) Chen, Q.; Ilies, L.; Yoshikai, N.; Nakamura, E. Org. Lett. 2011, 13, 3232–3234.
31) Patureau, F. W.; Besset, T.; Kuhl, N.; Glorius, F. J. Am. Chem. Soc. 2011, 133, 2154–2156.
32) Satoh, T.; Miura, M. Chem. Eur. J. 2010, 16, 11212–11222.
33) Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 14006–14008.
34) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C. H. Angew.Chem. Int. Ed. 2008, 47, 9462–9465.
35) Tran, D. N.; Cramer, N. Angew. Chem. Int. Ed. 2011, 50, 11098–11102.
36) Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M. N.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474–16475.
37) Li, D. –D.; Yuan, T. -T.; Wang, G. -W. J. Org. Chem. 2012, 77, 3341−3347.
38) Wang, L.; Liu, S.; Li, Z.; Y. Yu, Org.lett. 2011, 13, 6137-6139.
39) Yu, M.; Liang, Z.; Wang, Y.; Zhang, Y. J. Org. Chem. 2011, 76, 4987–4994.
40) Peng, J.; Chen, T.; Chen, C.; Li, B. J. Org. Chem. 2011, 76, 9507−9513.
41) Park, J.; Park, E.; Kim, A.; Lee, Y.; Chi, K. –W.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Org. Lett. 2011, 13, 4390-4393.
42) Novák, P.; Correa, A.; Gallardo-Donaire, J.; Martin, R. Angew. Chem. Int. Ed. 2011, 50, 12236–12239.
43) Li, W.; Xu, Z.; Sun, P.; Jiang, X.; Fang, M. Org. Lett. 2011, 13, 1286-1289.
44) Mahendar, L.; Krishna, J.; Reddy, A. G. K.; Ramulu, B. V.; Satyanarayana, G. Org. Lett. 2012, 14, 628-631.
45) Liang, Y.; Geng, W.; Wei, J.; Ouyanga, K.; Xi, Z. Org. Biomol. Chem. 2012, 10, 1537–1542.
46) Zhu, M. -K.; Zhao, J. -F.; Loh, T. -P. Org. Lett. 2011, 13, 6308-6311.
47) Wrigglesworth, J. W.; Cox, B.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Org. Lett. 2011, 13, 5326-5329.
48) Zhang, M.; Zhang, S.; Liu, M.; Cheng, J. Chem. Commun. 2011, 47, 11522–11524.
49) Deng, G. –B.; Wang, Z. –Q.; Song, R. –J.; Zhou, M. –B.; Wei, W. –T.; Xiea, P.; Li, J. –H. Chem. Commun. 2011, 47, 8151–8153.
50) Yu, D.; Shen, Q.; Lu, L. J. Org. Chem. 2012, 77, 1798−1804.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 李仕芬:〈男性的恐懼──台灣女作家小說-探〉,《人文中國學報》,第6期,1999
2. 杭之:〈廖輝英的小說反映的一些問題〉,《當代》第2期,1986年6月,頁107
3. 林以正:〈為什麼要結婚:在兩性革命下為新婚姻觀定位〉,《測驗與輔導》第135
4. 林純芬:〈廖輝英部分作品摘要與評價〉,《中縣文藝》第10期,1996年12月,
5. 林玉薇:〈游刃於人性肌裡的銳筆—專訪廖輝英〉,《文訊》第181期,2000年11
6. 林燿德:〈慾愛無岸-談當代兩岸小說的愛情主題〉,《聯合文學》,第7卷第4期,
7. 陳秀如:〈從迷失到覺醒—論廖輝英小說中的女性成長迴路〉,《臺灣文學評論》,
8. 黃基淦:〈廖輝英彩筆紛呈世態人事〉,《卓越雜誌》第6期,2001年,頁170~
9. 彭瑞金:〈一頁女性的成長記錄——試評廖輝英〈油蔴菜籽〉〉,《文學界》第6
10. 廖輝英:〈女作家們寫些什麼?〉,《中央月刊文訊別冊》第9卷第149期,1983
11. 廖輝英:〈嚴肅與通俗之間〉,《文訊月刊》第26期,1986年10月,頁94~97。
12. 廖輝英:〈八0年代女性創作與社會化之關係〉,《文訊月刊》,第127期,1996
13. 廖輝英:〈魅惑、奇詭的孤獨之旅──談長篇創作〉,《文訊月刊》,第247期,2006
14. 廖輝英:〈嚴肅與通俗之間〉,《文訊》,第11版,1986年10月。
15. 蔡英俊:〈女作家兩種典型及其困境——討論李昂與廖輝英的小說〉,《文星》第