跳到主要內容

臺灣博碩士論文加值系統

(44.221.70.232) 您好!臺灣時間:2024/05/29 10:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄒函文
論文名稱:應用液相層析串聯質譜儀定量分析研究細胞穿透胜–ECP10
論文名稱(外文):Quantitative Analysis of Cell-penetrating Peptide–ECP10 by Liquid Chromatography/Mass Spectrometry
指導教授:謝有容謝有容引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:94
中文關鍵詞:細胞穿透胜肽液相層析串聯質譜儀
外文關鍵詞:cell-penetrating peptideLC/MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞穿透胜肽 (cell-penetrating peptides,CPPs) 是描述由三十個氨基酸以下所組成,並具有細胞穿透活性的多肽。物質分子藉由與細胞穿透胜肽的結合,可克服原生質膜的阻礙而進入細胞內部,是現今藥物傳送醫療最有發展潛力的一項工具。嗜酸性白血球陽離子蛋白 (eosinophil cationic protein,ECP) 序列中的「32NYRWRCKNQN41」,具有進入細胞的活性能力,為一新的細胞穿透胜肽。將此序列合成並修飾上螢光物質後 (F-ECP10),即可進行各式實驗以觀測其穿透細胞之狀況與效果。我們利用液相層析串聯質譜儀的技術,針對F-ECP10的作用及偵測進行一系列探討。首先,我們發現所使用的RPMI 1640細胞培養基成份中,胱胺酸參與了此作用機制,由質譜鑑定結果,F-ECP10與胱胺酸產生雙硫鍵交換的反應,以致實際基質中,F-ECP10是與半胱胺酸以雙硫鍵結合的形式存在 (F-ECP10-Cys),推測實際上與細胞作用之分子應為F-ECP10-Cys構形之分子。因此,我們針對其進行一系列層析及質譜儀的最佳化參數設定,並以細胞培養液製作定量校正曲線的探討。可得到其線性方程式R2值0.9985,濃度的線性範圍為50 nM至10 μM,偵測極限為6.29 nM,且具有良好的再現性。在此我們利用液相層析串聯質譜儀技術,發展出一套針對F-ECP10定量偵測的研究方式,操作簡便且省時,未來可應用於細胞穿透胜肽或其他多肽之偵測與應用。
Cell-penetrating peptide (CPP), usually less than 30 amino acids, was used to describe peptides that have ability to penetrate cell membranes and translocate different cargos into cells. CPPs were considered to hold great potential for delivery of therapeutic molecules. Eosinophil cationic protein (ECP) was a well-known biomarker for asthma and other airway inflammation. A 10 amino acid sequence 32NYRWRCKNQN41 (ECP10) in ECP was found that existed cell penetrating property and studied in this article. To investigate the mechanism of internalization and quantitative analysis of F-ECP10, we used the technique of liquid chromatography tandem mass spectrometry (LC/MS) for our studies. We found the cystine contained in the medium RPMI 1640 was reacted with F-ECP10 forming derivative. By the confirmation of mass spectrometry, F-ECP10 and cystine underwent disulfide exchange, and formed the disulfide bond between ECP10 and cysteine (F-ECP10-Cys). We supposed it is the structure of F-ECP10-Cys that interacted with cells. Therefore, we optimized parameters based on LC/MS and plotted the calibration curve in RPMI 1640 medium for F-ECP10-Cys. The linear range was from 50 nM to 10 μM with the detection limit 6.29 nM. By utilizing the technique of LC/MS here, we developed a new method for F-ECP10 to study the mechanism of internalization and quantitative detection. It was simple, time-saving, and good for further applications on the fields of cell-penetrating peptide.
摘 要 i
Abstract iii
誌 謝 v
縮寫表 vi
目 錄 viii
圖目錄 x
表目錄 xii
一、 前言 1
1.1 研究緣起 1
1.2 研究目標 2
二、 背景發展與原理介紹 3
2.1 人類核糖核酸酶A 3
2.2 嗜酸性白血球陽離子蛋白 4
2.3 細胞穿透胜肽簡介與概況 9
2.4 細胞穿透胜肽F-ECP10 13
2.5 研究工具介紹與新方法開發 16
2.6 液相層析儀 17
2.7 液相層析串聯質譜儀 31
2.7.1 串聯介面 33
2.7.2 質譜游離源 34
2.7.3 質量分析器 42
三、 實驗與研究方法 49
3.1 藥品與試劑 49
3.2 儀器與裝置 50
3.3 液相層析儀條件 51
3.4 質譜儀參數 52
3.5 內標準品選擇 53
3.6 樣品配製方式 54
四、 結果與討論 55
4.1 實驗設計 55
4.2 F-ECP10細胞穿透特性 56
4.3 標準品F-ECP10定性 58
4.4 細胞穿透胜肽F-ECP10作用機制探討 60
4.4.1 RPMI 1640培養基作用現象 60
4.4.2 胱胺酸與半胱胺酸差異 68
4.4.3 細胞穿透特性歸納 74
4.5 游離源最佳化 75
4.5.1 毛細管電壓 (capillary voltage) 75
4.5.2 霧化氣體壓力 (nebulizer gas) 76
4.5.3 乾燥氣體流量 (dry gas) 77
4.5.4 毛細管溫度 (capillary temperature) 78
4.6 定量校正曲線與回收率 79
五、 結論與展望 83
參考文獻 84
[1] Robbins, P. D.; Ghivizzani, S. C., "Viral vectors for gene therapy" Pharmacol. Ther. 1998, 80, 35-47.
[2] Arnheiter, H.; Haller, O., "Antiviral state against influenza-virus neutralized by microinjection of antibodies to interferon-induced mx proteins" Embo J. 1988, 7, 1315-1320.
[3] Straubinger, R. M.; Duzgunes, N.; Papahadjopoulos, D., "Ph-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules" FEBS Lett. 1985, 179, 148-154.
[4] Legendre, J. Y.; Szoka, F. C., "Delivery of plasmid DNA into mammalian-cell lines using ph-sensitive liposomes - comparison with cationic liposomes" Pharm. Res. 1992, 9, 1235-1242.
[5] Jones, A. T.; Sayers, E. J., "Cell entry of cell penetrating peptides: Tales of tails wagging dogs" J. Control. Release 2012, 161, 582-591.
[6] Gupta, B.; Levchenko, T. S.; Torchilin, V. P., "Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides" Adv. Drug Deliv. Rev. 2005, 57, 637-651.
[7] Patel, L. N.; Zaro, J. L.; Shen, W. C., "Cell penetrating peptides: Intracellular pathways and pharmaceutical perspectives" Pharm. Res. 2007, 24, 1977-1992.
[8] Zorko, M.; Langel, U., "Cell-penetrating peptides: Mechanism and kinetics of cargo delivery" Adv. Drug Deliv. Rev. 2005, 57, 529-545.
[9] Gleich, G. J., "Mechanisms of eosinophil-associated inflammation" J. Allergy Clin. Immunol. 2000, 105, 651-663.
[10] Richard, J. P.; Melikov, K.; Vives, E.; Ramos, C.; Verbeure, B.; Gait, M. J.; Chernomordik, L. V.; Lebleu, B., "Cell-penetrating peptides - a reevaluation of the mechanism of cellular uptake" J. Biol. Chem. 2003, 278, 585-590.
[11] Lindgren, M. E.; Hallbrink, M. M.; Elmquist, A. M.; Langel, U., "Passage of cell-penetrating peptides across a human epithelial cell layer in vitro" Biochem. J. 2004, 377, 69-76.
[12] Oehlke, J.; Scheller, A.; Wiesner, B.; Krause, E.; Beyermann, M.; Klauschenz, E.; Melzig, M.; Bienert, M., "Cellular uptake of an alpha-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically" Biochim. Biophys. Acta-Biomembr. 1998, 1414, 127-139.
[13] Burlina, F.; Sagan, S.; Bolbach, G.; Chassaing, G., "A direct approach to quantification of the cellular uptake of cell-penetrating peptides using maldi-tof mass spectrometry" Nat. Protoc. 2006, 1, 200-205.
[14] Jiao, C. Y.; Delaroche, D.; Burlina, F.; Alves, I. D.; Chassaing, G.; Sagan, S., "Translocation and endocytosis for cell-penetrating peptide internalization" J. Biol. Chem. 2009, 284, 33957-33965.
[15] Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of instrumental analysis. 6th ed.; Thomson Brooks/Cole: USA, 2007.
[16] Domon, B.; Aebersold, R., "Review - mass spectrometry and protein analysis" Science 2006, 312, 212-217.
[17] Hoffmann, E. d.; Stroobant, V., Mass spectrometry: Principles and applications. 3rd ed.; John Wiley & Sons, Inc.: England, 2007.
[18] Dyer, K. D.; Rosenberg, H. F., "The rnase a superfamily: Generation of diversity and innate host defense" Mol. Divers. 2006, 10, 585-597.
[19] Rosenberg, H. F., "Rnase a ribonucleases and host defense: An evolving story" J. Leukoc. Biol. 2008, 83, 1079-1087.
[20] Pizzo, E.; Varcamonti, M.; Maro, A. D.; Zanfardino, A.; Giancola, C.; D'Alessio, G., "Ribonucleases with angiogenic and bactericidal activities from the atlantic salmon" Febs J. 2008, 275, 1283-1295.
[21] Boix, E.; Nogues, M. V., "Mammalian antimicrobial proteins and peptides: Overview on the rnase a superfamily members involved in innate host defence" Mol. Biosyst. 2007, 3, 317-335.
[22] Makarov, A. A.; Ilinskaya, O. N., "Cytotoxic ribonucleases: Molecular weapons and their targets" FEBS Lett. 2003, 540, 15-20.
[23] Koh, G. C. H.; Shek, L. P. C.; Goh, D. Y. T.; Van Bever, H.; Koh, D. S. Q., "Eosinophil cationic protein: Is it useful in asthma? A systematic review" Respir. Med. 2007, 101, 696-705.
[24] Niccoli, G.; Ferrante, G.; Cosentino, N.; Conte, M.; Belloni, F.; Marino, M.; Baca, M.; Montone, R. A.; Sabato, V.; Schiavino, D.; Patriarca, G.; Crea, F., "Eosinophil cationic protein: A new biomarker of coronary atherosclerosis" Atherosclerosis 2010, 211, 606-611.
[25] Mallorqui-Fernandez, G.; Pous, J.; Peracaula, R.; Aymami, J.; Maeda, T.; Tada, H.; Yamada, H.; Seno, M.; de Llorens, R.; Gomis-Ruth, F. X.; Coll, M., "Three-dimensional crystal structure of human eosinophil cationic protein (rnase 3) at 1.75 angstrom resolution" J. Mol. Biol. 2000, 300, 1297-1307.
[26] Hamann, K. J.; Ten, R. M.; Loegering, D. A.; Jenkins, R. B.; Heise, M. T.; Schad, C. R.; Pease, L. R.; Gleich, G. J.; Barker, R. L., "Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes - evidence for intronless coding sequences in the ribonuclease gene superfamily" Genomics 1990, 7, 535-546.
[27] Woschnagg, C.; Rubin, J.; Venge, P., "Eosinophil cationic protein (ecp) is processed during secretion" J. Immunol. 2009, 183, 3949-3954.
[28] Domachowske, J. B.; Dyer, K. D.; Adams, A. G.; Leto, T. L.; Rosenberg, H. F., "Eosinophil cationic protein rnase 3 is another rnasea-family ribonuclease with direct antiviral activity" Nucleic Acids Res. 1998, 26, 3358-3363.
[29] Lehrer, R. I.; Szklarek, D.; Barton, A.; Ganz, T.; Hamann, K. J.; Gleich, G. J., "Antibacterial properties of eosinophil major basic-protein and eosinophil cationic protein" J. Immunol. 1989, 142, 4428-4434.
[30] McLaren, D. J.; McKean, J. R.; Olsson, I.; Venge, P.; Kay, A. B., "Morphological-studies on the killing of schistosomula of schistosoma-mansoni by human eosinophil and neutrophil cationic proteins invitro" Parasite Immunol. 1981, 3, 359-373.
[31] Young, J. D.; Peterson, C. G. B.; Venge, P.; Cohn, Z. A., "Mechanism of membrane damage mediated by human eosinophil cationic protein" Nature 1986, 321, 613-616.
[32] Carreras, E.; Boix, E.; Navarro, S.; Rosenberg, H. F.; Cuchillo, C. M.; Nogues, M. V., "Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation" Mol. Cell. Biochem. 2005, 272, 1-7.
[33] Carreras, E.; Boix, E.; Rosenberg, H. F.; Cuchillo, C. M.; Nogues, M. V., "Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein" Biochemistry 2003, 42, 6636-6644.
[34] Maeda, T.; Kitazoe, M.; Tada, H.; de Llorens, R.; Salomon, D. S.; Ueda, M.; Yamada, H.; Seno, M., "Growth inhibition of mammalian cells by eosinophil cationic protein" Eur. J. Biochem. 2002, 269, 307-316.
[35] Fan, T. C.; Chang, H. T.; Chen, I. W.; Wang, H. Y.; Chang, M. D. T., "A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein" Traffic 2007, 8, 1778-1795.
[36] Fan, T. C.; Fang, S. L.; Hwang, C. S.; Hsu, C. Y.; Lu, X. A.; Hung, S. C.; Lin, S. C.; Chang, M. D. T., "Characterization of molecular interactions between eosinophil cationic protein and heparin" J. Biol. Chem. 2008, 283, 25468-25474.
[37] Munoz, E. M.; Linhardt, R. J., "Heparin-binding domains in vascular biology" Arterioscler. Thromb. Vasc. Biol. 2004, 24, 1549-1557.
[38] Hileman, R. E.; Fromm, J. R.; Weiler, J. M.; Linhardt, R. J., "Glycosaminoglycan-protein interactions: Definition of consensus sites in glycosaminoglycan binding proteins" Bioessays 1998, 20, 156-167.
[39] Cardin, A. D.; Weintraub, H. J. R., "Molecular modeling of protein-glycosaminoglycan interactions" Arteriosclerosis 1989, 9, 21-32.
[40] Walther, W.; Stein, U., "Viral vectors for gene transfer - a review of their use in the treatment of human diseases" Drugs 2000, 60, 249-271.
[41] Chakrabarti, R.; Wylie, D. E.; Schuster, S. M., "Transfer of monoclonal-antibodies into mammalian-cells by electroporation" J. Biol. Chem. 1989, 264, 15494-15500.
[42] Koren, E.; Torchilin, V. P., "Cell-penetrating peptides: Breaking through to the other side" Trends Mol. Med 2012, 18, 385-393.
[43] Bolhassani, A., "Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer" Biochim. Biophys. Acta-Rev. Cancer 2011, 1816, 232-246.
[44] Foged, C.; Nielsen, H. M., "Cell-penetrating peptides for drug delivery across membrane barriers" Expert Opin. Drug Deliv. 2008, 5, 105-117.
[45] Vives, E.; Brodin, P.; Lebleu, B., "A truncated hiv-1 tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus" J. Biol. Chem. 1997, 272, 16010-16017.
[46] Ptak, R. G.; Fu, W.; Sanders-Beer, B. E.; Dickerson, J. E.; Pinney, J. W.; Robertson, D. L.; Rozanov, M. N.; Katz, K. S.; Maglott, D. R.; Pruitt, K. D.; Dieffenbach, C. W., "Cataloguing the hiv type 1 human protein interaction network" Aids Res. Hum. Retrovir. 2008, 24, 1497-1502.
[47] Lundberg, P.; Langel, U., "A brief introduction to cell-penetrating peptides" J. Mol. Recognit. 2003, 16, 227-233.
[48] Kersemans, V.; Kersemans, K.; Cornelissen, B., "Cell penetrating peptides for in vivo molecular imaging applications" Curr. Pharm. Design 2008, 14, 2415-2427.
[49] Grdisa, M., "The delivery of biologically active (therapeutic) peptides and proteins into cells" Curr. Med. Chem. 2011, 18, 1373-1379.
[50] Endoh, T.; Ohtsuki, T., "Cellular sirna delivery using cell-penetrating peptides modified for endosomal escape" Adv. Drug Deliv. Rev. 2009, 61, 704-709.
[51] Brooks, N. A.; Pouniotis, D. S.; Tang, C. K.; Apostolopoulos, V.; Pietersz, G. A., "Cell-penetrating peptides: Application in vaccine delivery" Biochim. Biophys. Acta-Rev. Cancer 2010, 1805, 25-34.
[52] Torchilin, V. P., "Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery" Biopolymers 2008, 90, 604-610.
[53] Levchenko, T. S.; Rammohan, R.; Volodina, N.; Torchilin, V. P., "Tat peptide-mediated intracellular delivery of liposomes" Methods Enzymol. 2003, 372, 339-349.
[54] Torchilin, V. P.; Rammohan, R.; Weissig, V.; Levchenko, T. S., "Tat peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors" Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 8786-8791.
[55] Chugh, A.; Eudes, F., "Cellular uptake of cell-penetrating peptides pvec and transportan in plants" J. Pept. Sci. 2008, 14, 477-481.
[56] Nekhotiaeva, N.; Elmquist, A.; Rajarao, G. K.; Hallbrink, M.; Langel, U.; Good, L., "Cell entry and antimicrobial properties of eukaryotic cell-penetrating peptides" Faseb J. 2003, 17, 394-+.
[57] Ryves, W. J.; Harwood, A. J., "Use of a penetratin-linked peptide in dictyostelium" Mol. Biotechnol. 2006, 33, 123-131.
[58] Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiantz, A., "The 3rd helix of the antennapedia homeodomain translocates through biological-membranes" J. Biol. Chem. 1994, 269, 10444-10450.
[59] Rothbard, J. B.; Garlington, S.; Lin, Q.; Kirschberg, T.; Kreider, E.; McGrane, P. L.; Wender, P. A.; Khavari, P. A., "Conjugation of arginine oligomers to cyclosporin a facilitates topical delivery and inhibition of inflammation" Nat. Med. 2000, 6, 1253-1257.
[60] Moulton, H. M.; Nelson, M. H.; Hatlevig, S. A.; Reddy, M. T.; Iversen, P. L., "Cellular uptake of antisense morpholino oligomers conjugated to arginine-rich peptides" Bioconjugate Chem. 2004, 15, 290-299.
[61] Elmquist, A.; Hansen, M.; Langel, U., "Structure-activity relationship study of the cell-penetrating peptide pvec" Biochim. Biophys. Acta-Biomembr. 2006, 1758, 721-729.
[62] Martin, I.; Teixido, M.; Giralt, E., "Design, synthesis and characterization of a new anionic cell-penetrating peptide: Sap(e)" ChemBioChem 2011, 12, 896-903.
[63] Eguchi, A.; Akuta, T.; Okuyama, H.; Senda, T.; Yokoi, H.; Inokuchi, H.; Fujita, S.; Hayakawa, T.; Takeda, K.; Hasegawa, M.; Nakanishi, M., "Protein transduction domain of hiv-1 tat protein promotes efficient delivery of DNA into mammalian cells" J. Biol. Chem. 2001, 276, 26204-26210.
[64] Violini, S.; Sharma, V.; Prior, J. L.; Dyszlewski, M.; Piwnica-Worms, D., "Evidence for a plasma membrane-mediated permeability barrier to tat basic domain in well-differentiated epithelial cells: Lack of correlation with heparan sulfates" Biochemistry 2002, 41, 12652-12661.
[65] Ohkuma, S.; Poole, B., "Fluorescence probe measurement of intralysosomal ph in living cells and perturbation of ph by various agents" Proc. Natl. Acad. Sci. U. S. A. 1978, 75, 3327-3331.
[66] Jones, S. W.; Christison, R.; Bundell, K.; Voyce, C. J.; Brockbank, S. M. V.; Newham, P.; Lindsay, M. A., "Characterisation of cell-penetrating peptide-mediated peptide delivery" Br. J. Pharmacol. 2005, 145, 1093-1102.
[67] Polyakov, V.; Sharma, V.; Dahlheimer, J. L.; Pica, C. M.; Luker, G. D.; Piwnica-Worms, D., "Novel tat-peptide chelates for direct transduction of technetium-99m and rhenium into human cells for imaging and radiotherapy" Bioconjugate Chem. 2000, 11, 762-771.
[68] Alves, I. D.; Bechara, C.; Walrant, A.; Zaltsman, Y.; Jiao, C. Y.; Sagan, S., "Relationships between membrane binding, affinity and cell internalization efficacy of a cell-penetrating peptide: Penetratin as a case study" PLoS One 2011, 6.
[69] Aubry, S.; Burlina, F.; Dupont, E.; Delaroche, D.; Joliot, A.; Lavielle, S.; Chassaing, G.; Sagan, S., "Cell-surface thiols affect cell entry of disulfide-conjugated peptides" Faseb J. 2009, 23, 2956-2967.
[70] Aubry, S.; Aussedat, B.; Delaroche, D.; Jiao, C. Y.; Bolbach, G.; Lavielle, S.; Chassaing, G.; Sagan, S.; Burlina, F., "Maldi-tof mass spectrometry: A powerful tool to study the internalization of cell-penetrating peptides" Biochim. Biophys. Acta-Biomembr. 2010, 1798, 2182-2189.
[71] Kaplan, I. M.; Wadia, J. S.; Dowdy, S. F., "Cationic tat peptide transduction domain enters cells by macropinocytosis" J. Control. Release 2005, 102, 247-253.
[72] Hallbrink, M.; Floren, A.; Elmquist, A.; Pooga, M.; Bartfai, T.; Langel, U., "Cargo delivery kinetics of cell-penetrating peptides" Biochim. Biophys. Acta-Biomembr. 2001, 1515, 101-109.
[73] Cheung, J. C.; Chiaw, P. K.; Deber, C. M.; Bear, C. E., "A novel method for monitoring the cytosolic delivery of peptide cargo" J. Control. Release 2009, 137, 2-7.
[74] Ziegler, D. M., "Role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic-regulation" Annu. Rev. Biochem. 1985, 54, 305-329.
[75] Fleck, R. M. M.; Rodrigues, V.; Giacomazzi, J.; Parissoto, D.; Dutra, C. S.; Wyse, A. T. D.; Wajner, M.; Wannmacher, C. M. D., "Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex" Neurochem. Int. 2005, 46, 391-397.
[76] Lin, S. H.; Shaler, T. A.; Becker, C. H., "Quantification of intermediate-abundance proteins in serum by multiple reaction monitoring mass spectrometry in a single-quadrupole ion trap" Anal. Chem. 2006, 78, 5762-5767.
[77] Zhang, F. G.; Bartels, M. J.; Stott, W. T., "Quantitation of human glutathione s-transferases in complex matrices by liquid chromatography/tandem mass spectrometry with signature peptides" Rapid Commun. Mass Spectrom. 2004, 18, 491-498.
[78] Bansal, S. S.; Abbate, V.; Bomford, A.; Halket, J. M.; Macdougall, I. C.; Thein, S. L.; Hider, R. C., "Quantitation of hepcidin in serum using ultra-high-pressure liquid chromatography and a linear ion trap mass spectrometer" Rapid Commun. Mass Spectrom. 2010, 24, 1251-1259.
[79] Wan, H. B.; Umstot, E. S.; Szeto, H. H.; Schiller, P. W.; Desiderio, D. A., "Quantitative analysis of dmt(1) dalda in ovine plasma by capillary liquid chromatography-nano spray ion-trap mass spectrometry" J. Chromatogr. B 2004, 803, 83-90.
[80] Wei, B. Y.; Juang, Y. M.; Lai, C. C., "A novel approach for quantitative peptides analysis by selected electron transfer reaction monitoring" J. Chromatogr. A 2010, 1217, 6927-6931.
[81] Feng, W. Y.; Chan, K. K.; Covey, J. M., "Electrospray lc-ms/ms quantitation, stability, and preliminary pharmacokinetics of bradykinin antagonist polypeptide b201 (nsc 710295) in the mouse" J. Pharm. Biomed. Anal. 2002, 28, 601-612.
[82] Gil, J.; Cabrales, A.; Reyes, O.; Morera, V.; Betancourt, L.; Sanchez, A.; Garcia, G.; Moya, G.; Padron, G.; Besada, V.; Gonzalez, L. J., "Development and validation of a bioanalytical lc-ms method for the quantification of ghrp-6 in human plasma" J. Pharm. Biomed. Anal. 2012, 60, 19-25.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top