跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周子婷
研究生(外文):Chou, Tzu-Ting
論文名稱:結合功能性磁奈米粒子之電化學生物感測器於氣喘生物指標之偵測
論文名稱(外文):Detection of Asthma Biomarker - Eosinophil Cationic Protein by Functional Magnetic Nanoparticles based Electrochemical Biosensor
指導教授:謝有容謝有容引用關係
指導教授(外文):Hsieh, You-Zung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:72
中文關鍵詞:氣喘嗜酸性白血球陽離子蛋白肝素磁奈米複合材料電化學生物感測器
外文關鍵詞:asthmaECPheparinmagnetic nanoparticleselectrochemicalbiosensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們開發了偵測氣喘生物指標--嗜酸性白血球陽離子蛋白 (eosinophil cationic protein,ECP) 之電化學生物感測器。先前之研究中證實,支氣管上皮細胞上大量表現的硫酸乙醯肝素 (heparan sulfate) 與類似結構之肝素 (heparin) 對ECP 有專一及高度的鍵結親合力。於本實驗中用來當作檢測ECP之探針。具磁性金包覆鐵奈米粒子 (Au@Fe3O4 NPs) 目前已被證實具有低毒性及良好的生物相容性,被廣泛應用於各種生物樣品分析實驗中。因此,我們使用化學合成方法,利用半胱胺 (cysteamine) 為鍵結的橋樑,將硫酸乙醯肝素的相似物肝素藉由自組裝的方式修飾至 Au@Fe3O4 NPs 上,並利用修飾上肝素的功能性磁奈米粒子 (Hep-Au@Fe3O4 NPs) 添加至含有 ECP 樣品溶液中,使分散於溶液的ECP 會被功能性磁奈米粒子所抓取。此時,在電極後方施與一外加磁場,抓取到 ECP 的功能性磁奈米粒子 (ECP@Hep-Au@Fe3O4 NPs) 即會藉由磁性吸附的關係聚集至電極表面,並增加 ECP 於電極表面的濃度。當增加樣品溶液的體積以及功能性磁奈米粒子的數量,將會增加其電化學感測器偵測 ECP 的靈敏度。
由於 ECP 不具有電化學活性,因此,在本研究中,我們使用 Ru(NH3)63+/2+ 當作電化學活性物質,用以間接偵測 ECP。當溶液中沒有 ECP時,修飾肝素的功能性磁奈米粒子表面帶有高度的負電性,會藉由靜電吸引力的關係,將大量的 Ru(NH3)63+/2+ 吸附至電極表面,產生明顯的Ru(NH3)63+/2+ 氧化還原電流。反之,當溶液中含有 ECP 時,抓取到 ECP 的功能性磁奈米粒子的表面負電荷會因為 ECP 的遮蔽而下降,再加上由於 ECP 的等電位點為 10.8,在中性溶液下帶正電,會排斥溶液中的 Ru(NH3)63+/2+ 擴散至電極表面,降低 Ru(NH3)63+/2+ 氧化還原電流值。當溶液中的 ECP 濃度越高,其電流下降的幅度也越大,因此我們藉由電流下降的差值間接定量溶液中 ECP 的濃度。
本研究所開發的磁性電化學生物感測器不僅具有預濃縮溶液中 ECP 濃度的優點,亦可藉由磁力分離,將 ECP 從複雜的基質樣品中萃取出來,減少大部分的樣品基質干擾。本研究所設計的生物感測器,未來更可以結合至標靶藥物的開發,做更廣泛的應用。

In this study, the electrochemical biosensor combined with functional magnetic nanoparticles for detection of asthma biomarker was developed. Eosinophil cationic protein (ECP) was used as biomarker for asthma, which was been proved that bound with heparin and heparan sulfate expressed on cell membrane specifically. The synthesized magnetic core-shell Au@Fe3O4 NPs existed good bio-compatibility. Based on the specific binding between ECP and heparin and heparan sulfate, the heparin was immobilized on the Au@Fe3O4 NPs using the cysteamine as the linker. The heparin modified Au@Fe3O4 NPs were added into sample solutions containing ECP. After the ECP distributed in solution were captured by heparin modified Au@Fe3O4 NPs, an external magnetic field was applied behind the electrode. The Au@Fe3O4 NPs gathered to the surface of electrode and the ECP concentration near the electrode surface increased. By using this strategy, the sensitivity of designed biosensor could be further improved with larger sample volume used with corresponding amount of nanoparticles added. The Ru(NH3)63+/2+ was used as the electrochemical redox mediator. In the absence of ECP, the heparin modified Au@Fe3O4 NPs carrying large amount of negative charges, which attracted large amount of Ru(NH3)63+/2+ in the solution to provide the electrochemical redox signal. In the presence of the ECP, the heparin modified Au@Fe3O4 NPs bound with ECP and decreased its negative charge. Due to the positive charges carried by ECP, the Ru(NH3)63+/2+ was repulsed from the electrode surface. The redox signal of Ru(NH3)63+/2+ was decreased and the current difference could be used for quantitation of ECP. This designed magnetic nanoparticle based electrochemical biosensor was not only pre-concentrated the ECP concentration, but also extracted the ECP from the sample matrix like human serum or plasma. Most of electrochemical interference issues could be eliminated. This presented method could be further applied into similar probe-target combinations for more extensively usages.
摘要 i
致謝 v
目錄 vii
圖目錄 ix
表目錄 xi
縮寫表 xii
1. 前言 1
1.1. 研究緣起 1
1.2. 研究目標 2
2. 背景發展與原理介紹 4
2.1. 氣喘 ( Asthma ) 4
2.2. 嗜酸性白血球陽離子蛋白 ( Eosinophil Cationic Protein,ECP ) 6
2.3. 肝素 (heparin) 與硫酸乙醯肝素 (heparan sulfate) 7
2.4. 奈米材料 9
2.4.1. 磁奈米粒子 10
2.4.2. 磁奈米粒子之磁滯曲線 11
2.4.3. 磁奈米複合材料 16
2.5. 電化學分析法 18
2.5.1. 三電極系統 19
2.5.2. 循環伏安法 (Cyclic Voltammetry,CV) 21
2.5.3. 安培法 (Amperometry) 24
2.5.4. 方波伏安法 (Square Wave Voltammetry,SWV) 26
2.5.5. 電化學阻抗頻譜儀 (Electrochemical Impedance Spectroscopy,EIS) 28
2.5.6. 計時電量庫倫法 (Chronocoulometry,CC ) 32
2.6. 介面電位 (Zeta Potential) 36
2.7. 肝素修飾電極於 ECP 之偵測回顧 38
三、 實驗 40
3.1. 儀器設備 40
3.2. 藥品 42
3.3. 半胱胺修飾之肝素 (Hep-cys) 之合成 43
3.4. 磁奈米複合材料之製備及修飾 43
3.4.1. 磁奈米粒子合成 43
3.4.2. 磁奈米複合材料合成 44
3.4.3. 肝素修飾磁奈米複合材料 (Hep-Au@Fe3O4 NPs) 44
3.5. 實驗 45
3.5.1. 電極修飾之製備流程 45
3.5.2. 偵測嗜酸性白血球陽離子蛋白 (ECP) 46
3.5.3. 修飾電極及偵測嗜酸性白血球陽離子蛋白之定性 46
四、 結果與討論 48
4.1. 實驗設計 48
4.2. 磁奈米複合材料之合成結果 51
4.3. 肝素修飾磁奈米複合材料偵測 ECP 之定性 53
4.3.1. 介面電位 (Zeta Potential) 定性 53
4.3.2. 電化學定性 54
4.4. 最佳化 59
4.4.1. Hep-cys 修飾 Au@Fe3O4 NPs 濃度最佳化 59
4.4.2. Hep-cys 修飾Au@Fe3O4 NPs 時間最佳化 60
4.5. 以功能性磁奈米複合材料進行樣品濃縮與偵測 61
4.6. 檢量線與回收率 63
五、 結論與未來展望 66
參考文獻 67

[1] Privett, B. J.; Shin, J. H.; Schoenfisch, M. H., "Electrochemical Sensors". Anal. Chem. 2010, 82, 4723-4741.
[2] Kimmel, D. W.; LeBlanc, G.; Meschievitz, M. E.; Cliffel, D. E., "Electrochemical Sensors and Biosensors". Anal. Chem. 2012, 84, 685-707.
[3] Zhou, Y.; Li, C.-Y.; Li, Y.-S.; Ren, H.-L.; Lu, S.-Y.; Tian, X.-L.; Hao, Y.-M.; Zhang, Y.-Y.; Shen, Q.-F.; Liu, Z.-S.; Meng, X.-M.; Zhang, J.-H., "Monoclonal antibody based inhibition ELISA as a new tool for the analysis of melamine in milk and pet food samples". Food Chem. 2012, 135, 2681-2686.
[4] Byrem, T. M.; Bartlett, P. C.; Donohue, H.; Voisinet, B. D.; Houseman, J. T., "Performance of a commercial serum ELISA for the detection of antibodies to Neospora caninum in whole and skim milk samples". Vet. Parasit. 2012, 190, 249-253.
[5] Kumada, Y.; Ohigashi, Y.; Emori, Y.; Imamura, K.; Omura, Y.; Kishimoto, M., "Improved lectin ELISA for glycosylation analysis of biomarkers using PS-tag-fused single-chain Fv". J. Immunol. Methods 2012, 385, 15-22.
[6] Lee, J.-H.; Park, K. H.; Kim, H.-S.; Kim, K. W.; Sohn, M. H.; Kim, C.-H.; Lee, J.-S.; Hong, C.-S.; Park, J.-W., "Specific IgE measurement using AdvanSure (R) system: Comparison of detection performance with ImmunoCAP (R) system in Korean allergy patients". Clin. Chim. Acta 2012, 413, 914-919.
[7] Tohgi, K.; Kohno, K.; Takahashi, H.; Matsuo, H.; Nakayama, S.; Morita, E., "Usability of Fag e 2 ImmunoCAP in the diagnosis of buckwheat allergy". Arch. Dermatol. Res. 2011, 303, 635-642.
[8] Melioli, G.; Bonifazi, F.; Bonini, S.; Maggi, E.; Mussap, M.; Passalacqua, G.; Rossi, E. R.; Vacca, A.; Canonica, G. W.; Italian Board, I. I., "The ImmunoCAP ISAC molecular allergology approach in adult multi-sensitized Italian patients with respiratory symptoms". Clin. Biochem. 2011, 44, 1005-1011.
[9] Zhu, Q. Y.; Gao, Y. B.; Yu, B. W.; Ren, H.; Qiu, L.; Han, S. H.; Jin, W.; Jin, Q. H.; Mu, Y., "Self-priming compartmentalization digital LAMP for point-of-care". Lab Chip 2012, 12, 4755-4763.
[10] Kaneko, K.; Kimata, T.; Tsuji, S.; Ohashi, A.; Imai, Y.; Sudo, H.; Kitamura, N., "Measurement of urinary 8-oxo-7,8-dihydro-2-deoxyguanosine in a novel point-of-care testing device to assess oxidative stress in children". Clin. Chim. Acta 2012, 413, 1822-1826.
[11] Brunklaus, S.; Hansen-Hagge, T. E.; Erwes, J.; Hoth, J.; Jung, M.; Latta, D.; Strobach, X.; Winkler, C.; Ritzi-Lehnert, M.; Drese, K. S., "Fast nucleic acid amplification for integration in point-of-care applications". Electrophoresis 2012, 33, 3222-3228.
[12] Periasamy, A. P.; Chang, Y.-J.; Chen, S.-M., "Amperometric glucose sensor based on glucose oxidase immobilized on gelatin-multiwalled carbon nanotube modified glassy carbon electrode". Bioelectrochemistry 2011, 80, 114-120.
[13] Unnikrishnan, B.; Palanisamy, S.; Chen, S.-M., "A simple electrochemical approach to fabricate a glucose biosensor based on graphene-glucose oxidase biocomposite". Biosens. Bioelectron. 2013, 39, 70-75.
[14] Loaiza, O. A.; Jubete, E.; Ochoteco, E.; Cabanero, G.; Grande, H.; Rodriguez, J., "Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes". Biosens. Bioelectron. 2011, 26, 2194-2200.
[15] Du, D.; Tao, Y.; Zhang, W.; Liu, D.; Li, H., "Oxidative desorption of thiocholine assembled on core-shell Fe3O4/AuNPs magnetic nanocomposites for highly sensitive determination of acetylcholinesterase activity: An exposure biomarker of organophosphates". Biosens. Bioelectron. 2011, 26, 4231-4235.
[16] Sharma, P.; Tuteja, S. K.; Bhalla, V.; Shekhawat, G.; Dravid, V. P.; Suri, C. R., "Bio-functionalized graphene-graphene oxide nanocomposite based electrochemical immunosensing". Biosens. Bioelectron. 2013, 39, 99-105.
[17] Kong, F.-Y.; Xu, B.-Y.; Xu, J.-J.; Chen, H.-Y., "Simultaneous electrochemical immunoassay using CdS/DNA and PbS/DNA nanochains as labels". Biosens. Bioelectron. 2013, 39, 177-182.
[18] Elshafey, R.; Tlili, C.; Abulrob, A.; Tavares, A. C.; Zourob, M., "Label-free impedimetric immunosensor for ultrasensitive detection of cancer marker Murine double minute 2 in brain tissue". Biosens. Bioelectron. 2013, 39, 220-225.
[19] Qiu, J.-D.; Xiong, M.; Liang, R.-P.; Peng, H.-P.; Liu, F., "Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application". Biosens. Bioelectron. 2009, 24, 2649-2653.
[20] Niemeyer, C. M., "Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science". Angew. Chem. Int. Ed. 2001, 40, 4128-4158.
[21] Fan, T.-C.; Fang, S.-L.; Hwang, C.-S.; Hsu, C.-Y.; Lu, X.-a.; Hung, S.-c.; Lin, S.-C.; Chang, M. D.-T., "Characterization of molecular interactions between eosinophil cationic protein and heparin". J. Biol. Chem. 2008, 283, 25468-25474.
[22] Torrent, M.; Victoria Nogues, M.; Boix, E., "Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site". J. Mol. Recognit. 2011, 24, 90-100.
[23] Koh, G. C. H.; Shek, L. P. C.; Goh, D. Y. T.; Van Bever, H.; Koh, D. S. Q., "Eosinophil cationic protein: Is it useful in asthma? A systematic review". Respir. Med. 2007, 101, 696-705.
[24] Sadeghi, H.; Lowenthal, D. B.; Dozer, A. J., "Inspiratory flow limitation in children with bronchopulmonary dysplasia". Pediatr. Pulmonol. 1998, 26, 167-172.
[25] Venge, P.; Bystrom, J.; Carlson, M.; Hakansson, L.; Karawacjzyk, M.; Peterson, C.; Seveus, L.; Trulson, A., "Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease". Clin. Exp. Allergy 1999, 29, 1172-1186.
[26] Peters, M. S.; Rodriguez, M.; Gleich, G. J., "Localization of human eosinophil granule major basic protein, eosinophil cationic protein, and eosinophil-derived neurotoxin by immunoelectron microscopy". Lab. Invest. 1986, 54, 656-662.
[27] Mallorqui-Fernandez, G.; Pous, J.; Peracaula, R.; Aymami, J.; Maeda, T.; Tada, H.; Yamada, H.; Seno, M.; de Llorens, R.; Gomis-Ruth, F. X.; Coll, M., "Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 angstrom resolution". J. Mol. Biol. 2000, 300, 1297-1307.
[28] Hamann, K. J.; Ten, R. M.; Loegering, D. A.; Jenkins, R. B.; Heise, M. T.; Schad, C. R.; Pease, L. R.; Gleich, G. J.; Barker, R. L., "Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: Evidence for intronless coding sequences in the ribonuclease gene superfamily". Genomics 1990, 7, 535-546.
[29] Woschnagg, C.; Rubin, J.; Venge, P., "Eosinophil Cationic Protein (ECP) Is Processed during Secretion". J. Immunol. 2009, 183, 3949-3954.
[30] Gleich, G. J., "Mechanisms of eosinophil-associated inflammation". J. Allergy Clin. Immunol. 2000, 105, 651-663.
[31] Domachowske, J. B.; Dyer, K. D.; Adams, A. G.; Leto, T. L.; Rosenberg, H. F., "Eosinophil cationic protein RNase 3 is another RNaseA-family ribonuclease with direct antiviral activity". Nucleic Acids Res. 1998, 26, 3358-3363.
[32] Lehrer, R. I.; Szklarek, D.; Barton, A.; Ganz, T.; Hamann, K. J.; Gleich, G. J., "Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein". J. Immunol. 1989, 142, 4428-4434.
[33] Munoz, E. M.; Linhardt, R. J., "Heparin-binding domains in vascular biology". Arterioscler Thromb Vasc Biol. 2004, 24, 1549-1557.
[34] Hileman, R. E.; Fromm, J. R.; Weiler, J. M.; Linhardt, R. J., "Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins". Bioessays 1998, 20, 156-167.
[35] 馬振基, 奈米材料科技原理與應用. 全華科技圖書股份有限公司: 2005.
[36] Thao Thi Hien, P.; Cuong, C.; Sang Jun, S., "Application of citrate-stabilized gold-coated ferric oxide composite nanoparticles for biological separations". J. Magn. Magn. Mater. 2008, 320, 2049-55.
[37] Sun, C.; Lee, J. S. H.; Zhang, M., "Magnetic nanoparticles in MR imaging and drug delivery". Adv. Drug Delivery Rev. 2008, 60, 1252-1265.
[38] Wang, J., Analytical electrochemistry John Wiley &; Sons New York, 2000.
[39] Bard, A. J. F., L. R., Electrochemical Methods Fundamentals and Applications. 2nd ed.; John Wiley &; Sons: 2001.
[40] Lazcka, O.; Del Campo, F. J.; Munoz, F. X., "Pathogen detection: A perspective of traditional methods and biosensors". Biosens. Bioelectron. 2007, 22, 1205-1217.
[41] Vandaveer, W. R.; Pasas-Farmer, S. A.; Fischer, D. J.; Frankenfeld, C. N.; Lunte, S. M., "Recent developments in electrochemical detection for microchip capillary electrophoresis". Electrophoresis 2004, 25, 3528-3549.
[42] Odea, J. J.; Osteryoung, J.; Osteryoung, R. A., "Theory of square wave voltammetry for kinetic systems". Anal. Chem. 1981, 53, 695-701.
[43] Zachowski, E. J.; Wojciechowski, M.; Osteryoung, J., "The analytical application of square-wave voltammetry". Anal. Chim. Acta 1986, 183, 47-57.
[44] Osteryoung, J.; Odea, J. J., "Square-Wave Voltammetry". J. Electroanal. Chem. 1986, 14, 209-308.
[45] Harris, D. C., Quantitative Chemical Analysis. 7 th ed.; Craig Bleyer: China Lake: 2007.
[46] Kissinger, P. T.; Heineman, W. R., "Cyclic Voltammetry". J. Chem. Educ. 1983, 60, 702-706.
[47] Katz, E.; Willner, I., "Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors". Electroanalysis 2003, 15, 913-947.
[48] Sabatani, E.; Cohenboulakia, J.; Bruening, M.; Rubinstein, I., "Thioaromatic Monolayers on Gold: A New Family of Self -Assembling Monolayers". Langmuir 1993, 9, 2974-2981.
[49] Antoine, O.; Bultel, Y.; Durand, R., "Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion (R)". J. Electroanal. Chem. 2001, 499, 85-94.
[50] Adler, S. B.; Lane, J. A.; Steele, B. C. H., "Electrode kinetics of porous mixed-conducting oxygen electrodes". J. Electrochem. Soc. 1996, 143, 3554-3564.
[51] Bisquert, J., "Theory of the impedance of electron diffusion and recombination in a thin layer". J. Phys. Chem. B 2002, 106, 325-333.
[52] Hauch, A.; Georg, A., "Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells". Electrochim. Acta 2001, 46, 3457-3466.
[53] Bard, A. J.; Faulkner, L. R., Electrochemical Methods Fundamentals and Applications. 2nd ed.; John Wiley &; Sons, Inc.: Hoboken, 2001.
[54] Andreu, A.; Merkert, J. W.; Lecaros, L. A.; Broglin, B. L.; Brazell, J. T.; El-Kouedi, M., "Detection of DNA oligonucleotides on nanowire array electrodes using chronocoulometry". Sensors and Actuators B-Chemical 2006, 114, 1116-1120.
[55] Lao, R. J.; Song, S. P.; Wu, H. P.; Wang, L. H.; Zhang, Z. Z.; He, L.; Fan, C. H., "Electrochemical interrogation of DNA monolayers on gold surfaces". Anal. Chem. 2005, 77, 6475-6480.
[56] Fan, Q.; Zhao, J.; Li, H.; Zhu, L.; Li, G., "Exonuclease III-based and gold nanoparticle-assisted DNA detection with dual signal amplification". Biosens. Bioelectron. 2012, 33, 211-215.
[57] Wang, J.; Zhang, S.; Zhang, Y., "Fabrication of chronocoulometric DNA sensor based on gold nanoparticles/poly(L-lysine) modified glassy carbon electrode". Analytical Biochemistry 2010, 396, 304-309.
[58] Tang, J.; Myers, M.; Bosnick, K. A.; Brus, L. E., "Magnetite Fe3O4 nanocrystals: Spectroscopic observation of aqueous oxidation kinetics". J. Phys. Chem. B 2003, 107, 7501-7506.
[59] Yao, K. L.; Lu, Q. H.; Xi, D.; Liu, Z. L.; Luo, X. P.; Ning, Q., "Synthesis and characterization of composite nanoparticles comprised of gold shell and magnetic core/cores". J. Magn. Magn. Mater. 2006, 301, 44-9.
[60] Lee, Y.; Angel Garcia, M.; Huls, N. A. F.; Sun, S., "Synthetic Tuning of the Catalytic Properties of Au-Fe3O4 Nanoparticles". Angew. Chem. Int. Ed. 2010, 49, 1271-1274.
[61] Li, N. B.; Kwak, J., "A penicillamine biosensor based on tyrosinase immobilized on nano-Au/PAMAM dendrimer modified gold electrode". Electroanalysis 2007, 19, 2428-2436.
[62] Bogomolova, A.; Komarova, E.; Reber, K.; Gerasimov, T.; Yavuz, O.; Bhatt, S.; Aldissi, M., "Challenges of Electrochemical Impedance Spectroscopy in Protein Biosensing". Anal. Chem. 2009, 81, 3944-3949.
[63] Minard-Basquin, C.; Kugler, R.; Matsuzawa, N. N.; Yasuda, A., "Gold-nanoparticle-assisted oligonucleotide immobilisation for improved DNA detection". IEE Proc. Nanobiotechnol. 2005, 152, 97-103.
[64] Demers, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A.; Letsinger, R. L.; Elghanian, R.; Viswanadham, G., "A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles". Anal. Chem. 2000, 72, 5535-5541.
[65] Shen, L.; Chen, Z.; Li, Y.; He, S.; Xie, S.; Xu, X.; Liang, Z.; Meng, X.; Li, Q.; Zhu, Z.; Li, M.; Le, X. C.; Shao, Y., "Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes". Anal. Chem. 2008, 80, 6323-6328.
[66] Peng, M.; Lei, L.; Yun, L.; Genxi, L., "A novel electrochemical method to detect mercury (II) ions". Electrochem. Commun. 2009, 11, 1904-7.
[67] Wu, Y. P.; Zhang, T.; Zheng, Z. H.; Ding, X. B.; Peng, Y. X., "A facile approach to Fe3O4@Au nanoparticles with magnetic recyclable catalytic properties". Materials Research Bulletin 2010, 45, 513-517.
[68] Reimert, C. M.; Venge, P.; Kharazmi, A.; Bendtzen, K., "DETECTION OF EOSINOPHIL CATIONIC PROTEIN (ECP) BY AN ENZYME-LINKED-IMMUNOSORBENT-ASSAY". J. Immunol. Methods 1991, 138, 285-290.
[69] Aridogan, B. C.; Kaya, S.; Cetin, E. S.; Tas, T.; Demirci, M., "EVALUATION OF EOSINOPHIL CATIONIC PROTEIN LEVELS WITH CLINICAL SYMPTOMS AND LABORATORY FINDINGS OF PATIENTS WITH CYSTIC ECHINOCOCCOSIS". Mikrobiyoloji Bulteni 2009, 43, 285-292.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊