跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/16 00:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃筱涵
研究生(外文):Huang,Hsiao-Han
論文名稱:積體電路廢水毒性鑑定及毒性減量之研究
論文名稱(外文):The Study of Toxicity Identification and Reduction Evaluation Procedure in Integrate Circuit Wastewater
指導教授:陳重元
指導教授(外文):Chen,Chung-Yuan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:87
中文關鍵詞:積體電路廢水毒性鑑定評估毒性減量評估生物毒性顯影液
外文關鍵詞:Integrate Circuit Wastewatertoxicity identification evaluation (TIE)Toxicity reduction evaluation(TRE)biological toxicityD.magnaMicrotoxTetramethylammonium hydroxide(TMAH)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:348
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係針對積體電路排放廢水,利用Microtox急毒性試驗及D.magna水蚤急毒性試驗檢測其生物毒性,並進行毒性鑑定(Toxicant Identification Evaluation, TIE)之探討,找出主要毒性物質來源,而後進行毒性減量評估(Toxicity Reduction Evaluation, TRE)。毒性鑑定結果顯示廢水主要毒性物質為過氧化氫、氨氮、總銅以及氟離子。經phase I各分離程序,以曝氣試驗、陽離子交換樹脂及陰陽離子交換樹脂等處理程序對於廢水毒性皆有良好的去除效果。其中以陰、陽離子交換樹脂串聯之分離程序可完全去除廢水毒性。有機毒物於phaseII 僅鑑定出異丙胺等含氮有機物質,其貢獻些微有機物毒性。由phase III毒性確認試驗結果得知,將毒性物質過氧化氫、氨氮、總銅及氟離子回添加於經離子交換樹脂處理之廢水,毒性結果與原始廢水一致。而對於有機物溶劑顯影液之生物毒性研究,若將其添加於合成廢水中,亦會發現毒性強度大幅提高。且根據本研究試驗結果顯示顯影液確實對於水生生物有危害性,對於D.magna EC50值 1.15 mg/L。於毒性減量研究,活性碳吸附並無法有效去除廢水毒性。而陰、陽離子交換樹脂串聯則有良好的廢水毒性去除效果。此外,由於製程排放廢水量大,且水質成份極為複雜。若需提升毒物鑑定之可靠性,應隨時掌控廢水性質及建立製程原物料使用清單與特定污染源出處。而毒性減量工作屬管末處理,在得知主要毒性物質後,若能由源頭製程生產線釋出毒性物質之處加強原物料用量的控管,以及針對高濃度污染物先行處理,應可大幅降低後續處理費用。
In this study, Microtox and Daphnia magna acute toxicity tests and
toxicity identification evaluation procedures (TIE) were applied to identify causative toxicants in the effluents from integrated circuit industries. Toxicity reduction evaluation (TRE) process was conducted to remove the observed toxicity by eliminating toxicants from the effluent.Based on the TIE results, hydrogen peroxide、ammonia、copper and Flouride were identified as major toxicants in the raw wastewater. The above identification has been further verified by confirm tests. Aeration、cation ion exchange and mixed-bed ion exchange were found to be the most effective treatment processes. In addition, 2-PROPANAMINE and Tetramethylammonium hydroxide(TMAH) were suspected as toxic organic compounds which caused minor toxicity toward Daphnia magna. However, no attempt was made to confirm such suspicions because these organic toxicants have been effectively removed through TRE processes.Finally,the acute toxicity of integrated circuit industry effluent was completely removed by the toxicity reduction evaluation process (mixed-bed ion exchange)

目錄 iv
表目錄 vi
圖目錄 vii
第一章 前言 1
1.1研究緣起 1
1.2研究目的及內容 2
1.3研究架構 3
第二章 文獻回顧 4
2.1生物毒性試驗評估 4
2.2半導體產業發展現況與製程污染來源 7
2.2.1產業發展現況 7
2.2.2半導體製程說明 8
2.2.3積體電路廢水之特性概述 11
2.3毒性鑑定評估 14
2.4毒性鑑定評估應用於各種型態之廢水檢測之研究案例 16
2.5文獻總結 18
第三章 基礎理論 19
3.1毒性鑑定評估(Toxicity Identification evaluation ,TIE) 19
3.2毒性減量評估 28
3.3毒性單位 (Toxicity Units,TU) 30
3.4生物毒性分析之比較 30
第四章 儀器設備與實驗方法 31
4.1實驗設備 31
4.2實驗材料與試劑 32
4.3生物急毒性試驗數據處理 34
4.4採樣廢水背景(放流水) 35
4.5實驗步驟 37
第五章 結果討論 44
5.1積體電路製造之放流水特性 44
5.2毒性鑑定評估 45
5.2.1生物毒性試驗 ─以Microtox 毒性試驗檢測 45
5.2.2生物毒性試驗 ─以D.magna 毒性試驗檢測 48
5.2.3綜合生物毒性試驗評述 54
5.2.4有機毒物之分析 55
5.3毒性確認試驗 60
5.3.1第IV次採樣分析 60
5.3.2第V次採樣分析 62
5.4顯影液之生物毒性 63
5.5毒性減量TRE 65
5.5.1過氧化氫降解現象 65
5.5.2離子交換樹脂 67
5.5.3活性碳吸附 70
5.5.4實廠操作成本分析 72
第五章 結論 75
第六章 建議 76
第七章 參考文獻 77


1.中華民國行政院環境保護署, http://www.epa.gov.tw/.
2.USEPA, National Whole Effluent toxicity (WET) Implementation Guidance Under the NPDES Program, washington,DC. 2004.
3.USEPA, Methods for Aquatic Toxicity Identification Evaluation:Phase I Toxicity Characterization Procedures,washington,DC. 1991.
4.USEPA, Methods for Aquatic Toxicity Identification Evaluation:Phase II Toxicity Characterization Procedures for Sample Exhibiting Acute and Chronic Toxicity,washington,DC. 1993.
5.USEPA, Methods for Aquatic Toxicity Identification Evaluation:phaseIII Toxicity Confirmation Procedures for Sample Exhibiting Acute and Chronic Toxicity., Washington,DC. 1993.
6.Kang, S.-W., et al., A comparative study of toxicity identification using Daphnia magna and Tigriopus japonicus: Implications of establishing effluent discharge limits in Korea. Marine Pollution Bulletin, 2011. 63(5–12): p. 370-375.
7.Jo, H.-J., et al., Toxicity identification and reduction of wastewaters from a pigment manufacturing factory. Chemosphere, 2008. 70(6): p. 949-957.
8.行政院環保署環境檢驗所, http://www.niea.gov.tw/.
9.Hao, O.J., et al., Use of microtox tests for screening industrial wastewater toxicity. Water Science and Technology, 1996. 34(10): p. 43-50.
10.邱信翰, 積體電路廢水毒性鑑定暨毒性減量研究. 國立交通大學 環境工程研究所碩士學位論文, 中華民國八十五年六月.
11.J.G. Pearson, R.B.F., and W.E. Bishop(Eds.), Aquatic Toxicology and Hazard Assessment: Fifth Conference. ASTM STP 766, 1982.
12.經濟部, 工業科技研究發展規畫調查報告,污染與公害防治技術,半導體製造業. 中華民國七十七年三月一日.
13.行政院環保署, 「印染整理業」、「農藥業」、「印刷電路板業」及「晶圓製造及半導體製造業」等四行業之廢水中特定物質前處理及管理制度評估計畫. 2003.
14.行政院環境保護署, 高科技產業廢水水質特性分析及管制標準探討計畫. 中華民國九十七年一月.
15.USEPA, Generalized Methodology for conducting Industrial Toxicity Reduction Evaluations(TREs), Washington,DC. 1989.

16.Yi, X., et al., A toxicity monitoring study on identification and reduction of toxicants from a wastewater treatment plant. Ecotoxicology and Environmental Safety, 2009. 72(7): p. 1919-1924.
17.Jo, H.-J. and J. Jung, Quantification of differentially expressed genes in Daphnia magna exposed to rubber wastewater. Chemosphere, 2008. 73(3): p. 261-266.
18.Kim, E., et al., Toxicity identification in metal plating effluent: Implications in establishing effluent discharge limits using bioassays in Korea. Marine Pollution Bulletin, 2008. 57(6–12): p. 637-644.
19.Maltby, L., et al., Using single-species toxicity tests, community-level responses, and toxicity identification evaluations to investigate effluent impacts. Environmental Toxicology and Chemistry, 2000. 19(1): p. 151-157.
20.Tarkpea, M., et al., A biological and chemical characterization strategy for small and medium-sized industries connected to municipal sewage treatment plants. Environmental Toxicology and Chemistry, 1998. 17(2): p. 234-250.
21.Castillo, M., et al., Identification of Polar, Ionic, and Highly Water Soluble Organic Pollutants in Untreated Industrial Wastewaters. Environmental Science & Technology, 1999. 33(8): p. 1300-1306.
22.J., M.D.I.a.N.T., A seven-day life cycle cladoceran test. Environmental Toxicology and Chemistry, 1984. 3: p. 425-434.
23.Mount, D.R. and J.R. Hockett, Use of toxicity identification evaluation methods to characterize, identify, and confirm hexavalent chromium toxicity in an industrial effluent. Water Research, 2000. 34(4): p. 1379-1385.
24.Araujo, R.P.A., et al., Application of toxicity identification evaluation to sediment in a highly contaminated water reservoir in southeastern Brazil. Environmental Toxicology and Chemistry, 2006. 25(2): p. 581-588.
25.Reyes, F., et al., Characterization of E1 Kraft Mill Effluent by Toxicity Identification Evaluation Methodology. Water, Air, & Soil Pollution, 2009. 199(1): p. 183-190.
26.Isidori, M., et al., Toxicity identification evaluation of leachates from municipal solid waste landfills: a multispecies approach. Chemosphere, 2003. 52(1): p. 85-94.
27.Qureshi A.A., F.K.W., Thompson S.R., Janhurst S.M., Inniss C.S., Rokosh D.A.. Comparison of a luminescent bacterial test with other bioassays for determining toxicity of pure compounds and complex effluents. Aquatic Toxicology and Hazard Assessment: Fifth Conference, 1982: p. 179-195.
28.廖庭宇, 反應性醛腈類與極性麻醉含鹵素取代基苯胺脂混合毒性試驗,國立交通大學 環境工程學系碩士學位論文. 中華民國九十九年七月.
29.Fjallborg, B., et al., Toxicity Identification Evaluation of Five Metals Performed with Two Organisms (Daphnia magna and Lactuca sativa ). Archives of Environmental Contamination and Toxicology, 2006. 50(2): p. 196-204.
30.Van Sprang, P.A. and C.R. Janssen, Toxicity identification of metals: Development of toxicity identification fingerprints. Environmental Toxicology and Chemistry, 2001. 20(11): p. 2604-2610.
31.LARRY D. BENEFIBLD, J.F.J., BARRON L. WEAND, Process chemistry for water and wastewater treatment,Pretice-Hall,Inc.,Englewood Cliffs,New Jersey. 1981: p. p.446-p.447.
32.Osada, T., et al., Analysis of Ammonia Toxicity in Landfill Leachates. ISRN Toxicology, 2011. 2011: p. 6.
33.Marttinen, S.K., et al., Screening of physical–chemical methods for removal of organic material, nitrogen and toxicity from low strength landfill leachates. Chemosphere, 2002. 46(6): p. 851-858.
34.Boettger, G., Hubert Corr,Herwig Hoffmann, Production of amines from Alcohols. US patent 4014933, 1977.
35.Mark V.Haley, W.G.L., Chemical research development engineering center. 1989.
36.Liu, R., et al., Electrochemical Study of 2,3-Dihydroxybenzoic Acid and Its Interaction with Cu(II) and H2O2 in Aqueous Solutions:  Implications for Wood Decay. Environmental Science & Technology, 2004. 39(1): p. 175-180.
37.吳政龍、林宏榮、郭浩然、蘇世斌, 氫氧化四甲基銨(TMAH)中毒. 中華職業醫學雜誌, 2007. 14(2): p. 67-76.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top