1. Caldeira, K.; Jain, A. K.; Hoffert, M. I., Climate sensitivity uncertainty and the need for energy without CO2 emission. Science 2003, 299 (5615), 2052-4.
2. Allen, M. R.; Frame, D. J.; Huntingford, C.; Jones, C. D.; Lowe, J. A.; Meinshausen, M.; Meinshausen, N., Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 2009, 458 (7242), 1163-6.
3. Meinshausen, M.; Meinshausen, N.; Hare, W.; Raper, S. C.; Frieler, K.; Knutti, R.; Frame, D. J.; Allen, M. R., Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature 2009, 458 (7242), 1158-62.
4. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K., Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637.
5. Anpo, M.; Yamashita, H.; Ichihashi, Y.; Fujii, Y.; Honda, M., Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites- Effects of the Structure of the Active Sites and the Addition of Pt. the Journal of Physical Chemistry B 1997, 101, 2632-2636.
6. Zhou, H.; Guo, J.; Li, P.; Fan, T.; Zhang, D.; Ye, J., Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels. Scientific reports 2013, 3, 1667.
7. Chang, S. M.; Liu, W. S., Surface doping is more beneficial than bulk doping to the photocatalytic activity of vanadium-doped TiO2. Appl. Catal. B: Environ 2011, 101 (3-4), 333-342.
8. Chang, S. M.; Liu, W. S., Surface doping of TiO2 of photocatalysts transition metal ions (V, Mn, Fe, Cu, Ce, and W)-physicochemical and photocatalytic properties In press.
9. Uner, D.; Oymak, M. M., On the mechanism of photocatalytic CO2 reduction with water in the gas phase. Catal. Today 2012, 181, 82-88.
10. Vesborg, P. C. K.; In, S.-i.; Olsen, J. L.; Henriksen, T. R.; Abrams, B. L.; Hou, Y.; Kleiman-Shwarsctein, A.; Hansen, O.; Chorkendorff, I., Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in μ-Reactors. The Journal of physical Chemistry C 2010, 114 (25), 11162-11168.
11. 胥穎亞; 張淑閔. 鋯離子摻雜與金沈積對中孔洞二氧化鈦微結構與光催化還原二氧化碳研究. 碩士論文, 國立交通大學, 新竹市, 2011.12. 林宸嶢; 張淑閔. 鍛燒溫度對釩離子摻雜二氧化鈦光觸媒物化與光催化還原二氧化碳特性研究. 碩士論文, 國立交通大學, 新竹市, 2011.13. Du, J.; Lai, X.; Yang, N.; Zhai, J.; Kisailus, D.; Su, F.; Wang, D.; Jiang, L., Hierarchically Ordered Macro−Mesoporous TiO2−Graphene Composite Films: Improved Mass Transfer, Reduced Charge Recombination, and Their Enhanced Photocatalytic Activities. ACS Nano 2011, 5, 590-596.
14. Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
15. Janisch, R.; Gopal, P.; Spaldin, N. A., Transition metal-doped TiO2 and ZnO—present status of the field. J. Phys.: Condens. Matter 2005, 17 (27), R657-R689.
16. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahneman, D. W., Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69-96.
17. Gaya, U. I.; Abdullah, A. H., Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2008, 9 (1), 1-12.
18. Fujishima, A.; Zhang, X.; Tryk, D., TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63 (12), 515-582.
19. Mills, A.; Hunte, S. L., An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 1997, 108, 1-35.
20. Nishikawa, M.; Mitani, Y.; Nosaka, Y., Photocatalytic Reaction Mechanism of Fe(III)-Grafted TiO2Studied by Means of ESR Spectroscopy and Chemiluminescence Photometry. The Journal of Physical Chemistry C 2012, 116 (28), 14900-14907.
21. Franch, M. I.; Ayllo ́n, J. A.; Peral, J.; Dome`nech, X., Enhanced photocatalytic degradation of maleic acid by Fe(III) adsorption onto the TiO2 surface. Catal. Today 2005, 101, 245-252.
22. Murakami, N.; Chiyoya, T.; Tsubota, T.; Ohno, T., Switching redox site of photocatalytic reaction on titanium(IV) oxide particles modified with transition-metal ion controlled by irradiation wavelength. Applied Catalysis A: General 2008, 348 (1), 148-152.
23. Yue, C.; Trudeau, M. L.; Antonelli, D., Mesoporous tantalum oxide photocatalysts for Schrauzer-type conversion of dinitrogen to ammonia. Can. J. Chem. 2005, 83 (4), 308-314.
24. Ambrus, Z.; Balázs, N.; Alapi, T.; Wittmann, G.; Sipos, P.; Dombi, A.; Mogyorósi, K., Synthesis, structure and photocatalytic properties of Fe(III)-doped TiO2 prepared from TiCl3. Appl. Catal. B: Environ 2008, 81 (1-2), 27-37.
25. Khalid, N. R.; Hong, Z.; Ahmed, E.; Zhang, Y.; Chan, H.; Ahmad, M., Synergistic effects of Fe and graphene on photocatalytic activity enhancement of TiO2 under visible light. Appl. Surf. Sci. 2012, 258 (15), 5827-5834.
26. Centi, G.; Perathoner, S.; Rak, Z. S., Reduction of greenhouse gas emissions by catalytic processes. Appl. Catal. B: Environ 2003, 41 (1-2), 143-155.
27. de Richter, R.; Caillol, S., Fighting global warming: The potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O-3, BC and other major contributors to climate change. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2011, 12, 1-19.
28. Buesseler, K. O.; Doney, S. C.; Karl, D. M.; Boyd, P. W.; Caldeira, K.; Chai, F.; Coale, K. H.; de Baar, H. J. W.; Falkowski, P. G.; Johnson, K. S.; Lampitt, R. S.; Michaels, A. F.; Naqvi, S. W. A.; Smetacek, V.; Takeda, S.; Watson, A. J., Ocean Iron Fertilization—Moving Forward in a Sea of Uncertainty. Science 2008, 319, 162.
29. Usubharatana, P.; McMartin, D.; Veawab, A.; Tontiwachwuthikul, P., Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial &; Engineering Chemistry Research 2006, 45, 2558-2568.
30. Yui, T.; Tamaki, Y.; Sekizawa, K.; Ishitani, O., Photocatalytic Reduction of CO2: From Molecules to Semiconductors. Top. Curr. Chem. 2011, 303, 151-184.
31. Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A., Efficient and Clean Photoreduction of CO2 to CO by Enzyme-Modified TiO2 Nanoparticles Using Visible Light. JACS 2010, 132, 2132-2133.
32. Yang, H.-C.; Lin, H.-Y.; Chien, Y.-S.; Wu, J. C.-S.; Wu, H.-H., Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol. Catal. Lett. 2009, 131 (3-4), 381-387.
33. Truong, Q. D.; Liu, J.-Y.; Chung, C.-C.; Ling, Y.-C., Photocatalytic reduction of CO2 on FeTiO3/TiO2 photocatalyst. Catal. Commun. 2012, 19, 85-89.
34. Wang, W. N.; An, W. J.; Ramalingam, B.; Mukherjee, S.; Niedzwiedzki, D. M.; Gangopadhyay, S.; Biswas, P., Size and structure matter: enhanced CO2 photoreduction efficiency by size-resolved ultrafine Pt nanoparticles on TiO2 single crystals. J. Am. Chem. Soc. 2012, 134 (27), 11276-81.
35. Hou, W.; Hung, W. H.; Pavaskar, P.; Goeppert, A.; Aykol, M.; Cronin, S. B., Photocatalytic Conversion of CO2to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catal. 2011, 1 (8), 929-936.
36. He, H.; Zapol, P.; Curtiss, L. A., Computational screening of dopants for photocatalytic two-electron reduction of CO2 on anatase (101) surfaces. Energy &; Environmental Science 2012, 5 (3), 6196.
37. Liu, C.; Cundari, T. R.; Wilson, A. K., CO2Reduction on Transition Metal (Fe, Co, Ni, and Cu) Surfaces: In Comparison with Homogeneous Catalysis. The Journal of Physical Chemistry C 2012, 116 (9), 5681-5688.
38. Chen, D.; Li, F.; Ray, A. K., External and internal masstransfer effect on photocatalytic degradation. Catal. Today 2001, 66, 475-4885.
39. Thiele, E. W., Relation between Catalytic Activity and Size of Particle Ind. Eng. Chem. 1939, 31 (7), 916-20.
40. Ollis, D. F., Kinetic Disguises in Heterogeneous Photocatalysis. Top. Catal. 2005, 35 (3-4), 217-223.
41. Mills, A.; Wang, J.; Ollis, D. F., Kinetics of liquid phase semiconductor photoassisted reactions: Supporting observations for a pseudo-steady-state model. The Journal of Physical Chemistry B 2006, 110, 14386-14390.
42. Egerton, T. A.; King, C. J., Influence of light-intensity on photoactivity in TiO2 pigmented systems. Journal of the Oil &; Colour Chemists Association 1979, 62 (10), 386-391.
43. Mills, A.; Wang, J.; Ollis, F. D., Dependence of the kinetics of liquid-phase photocatalyzed reactions on oxygen concentration and light intensity. J. Catal. 2006, 243 (1), 1-6.
44. Ohko, Y.; Hashimoto, K.; Fujishima, A., Kinetics of Photocatalytic Reactions under Extremely Low-Intensity UV Illumination on Titanium Dioxide Thin Films. J. Phys. Chem. A 1997, 101, 8057-8062.
45. Elsellami, L.; Vocanson, F.; Dappozze, F.; Puzenat, E.; Païsse, O.; Houas, A.; Guillard, C., Kinetic of adsorption and of photocatalytic degradation of phenylalanine effect of pH and light intensity. Applied Catalysis A: General 2010, 380, 142-148.
46. Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K., Quantitative Evaluation of the Photoinduced Hydrophilic Conversion Properties of TiO2 Thin Film Surfaces by the Reciprocal of Contact Angle. the journal of physical Chemistry B 2003, 107, 1028-1035.
47. Lo, C.-C.; Hung, C.-H.; Yuan, C.-S.; Wu, J.-F., Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Sol. Energy Mater. Sol. Cells 2007, 91 (19), 1765-1774.
48. Bikondoa, O.; Pang, C. L.; Ithnin, R.; Muryn, C. A.; Onishi, H.; Thornton, G., Direct visualization of defect-mediated dissociation of water on TiO2(110). Nature Materials 2006, 5 (3), 189-192.
49. Maruo, Y. Y.; Yamada, T.; Tsuda, M., Reactivity of CO2 and H2O on TiO2 catalysts studied by gas phase FT-IR method and deactivation mechanism. Journal of Physics: Conference Series 2012, 379, 012036.
50. 劉維斯; 張淑閔. 晶體內部與表面摻雜釩離子對二氧化鈦光觸媒物化特性與光催化活性之影響. 碩士論文, 國立交通大學, 新竹市, 2009.51. Yang, L.; Kruse, B., Revised Kubelka–Munk theory. I. Theory and application. Journal of the Optical Society of America A 2004, 21, 1993-1941.
52. Patterson, A. L., The Scherrer Formula for I-Ray Particle Size Determination. Physical review 1939, 56, 978-982.
53. Mueller, R.; Kammler, H. K.; Wegner, K.; Pratsinis, S. E., OH Surface Density of SiO2 and TiO2 by Thermogravimetric Analysis. Langmuir 2003, 19, 160-165.
54. Perry, R. H.; Green, D. W., Perry's Chemical Engineers' Handbook. McGraw Hill: New York, 1997.
55. Bourikas, K.; Hiemstra, T.; Van Riemsdijk, W. H., Ion Pair Formation and Primary Charging Behavior of Titanium Oxide (Anatase and Rutile). Langmuir 2001, 17, 749-756.
56. Egerton, T. A.; Harris, E.; Lawson, E. J.; Mile, B.; Rowlands, C. C., An EPR study of diffusion of iron into rutile. PCCP 2001, 3 (3), 497-504.
57. Moulijn, J. A.; van Diepen, A. E.; Kapteijn, F., Catalyst deactivation is it predictable? What to do? 2001, 212, 3-16.
58. Bird, R. B.; Stewart, W. E.; Lightfoot, E. N., Transport Phenomena. 2 ed.; Wiley: New York 2001.
59. Yang, C.-C.; Yu, Y.-H.; Linden, B. v. d.; Wu, J. C. S.; Mul, G., Artificial Photosynthesis over Crystalline TiO2-Based Catalysts- Fact or Fiction? JACS 2010, 132, 8398-8406.
60. Gracia, F.; Holgado, J. P.; Caballero, A.; Gonzalez-Elipe, A. R., Structural, Optical, and Photoelectrochemical Properties of Mn+-TiO2 Model Thin Film Photocatalysts. The Journal of Physical Chemistry B 2004, 108, 17466-17476.