跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/23 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃俊嵐
論文名稱:海洋天然物做為抗癌藥物之研究
論文名稱(外文):Characterization of marine natural products as anticancer agents
指導教授:梁美智梁美智引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:75
中文關鍵詞:天然物NF-κB多發性骨髓瘤癌症bortezomib
外文關鍵詞:natural productNF-κBmultiple myelomacancerbortezomib
相關次數:
  • 被引用被引用:0
  • 點閱點閱:590
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
做為治療疾病藥物之來源,天然物扮演了非常重要的角色,其獨特的結構與活性,對於新藥的發現與發展都十分具有幫助。由於知識與技術上的原因,在過去發現許多的海洋天然物並未就其分子作用機制做深入的研究與探討
。在本研究中,我們將探討從海洋菌Zooshikella sp.中所萃取出的紅色色素是否具有抗癌活性。藉由測定經過不同濃度的萃取物處理之後的癌症細胞株之細胞活性與增殖能力,我們證實了由Zooshikella sp.中所萃取出的紅色萃取物,對於癌細胞的確具有細胞毒性。經過一系列的驗證與純化,我們最後得到兩個具有相似結構的化合物,分別為WYT1-70-6 (prodigiosin) 與WYT1-70-10 (2-methyl-3-hep
-tyl prodigiosin)。兩者在抑制細胞增殖與誘發細胞凋亡的能力表現相當接近,此現象可由多二磷酸腺苷核糖聚合酶(PARP)被切割的情況證明。然而,根據結果發現即使結構相近,prodigiosin可以抑制腫瘤壞死因子α (TNFα) 在多發性骨髓瘤(multiple myeloma) 所引發的NF-κB核轉移與活化;而2-methyl-3-heptyl prodigiosin則無此現象。最後,我們證實了prodigiosin可與bortezomib共同作用而得到更好的細胞毒殺性。總結來說,我們的實驗結果顯示:由於抑制了轉錄因子NF-κB的活性,由Zooshikella sp.所純化出的天然物prodigiosin展現了抗癌活性,並與bortezomib在細胞毒殺能力上具有加成性。

Natural products are important sources of bioactive agents for treating diseases. The unique structures and novel activities of marine natural products represent a promising field for drug discovery. For historical reasons, the molecular mechanisms of many bioactive marine natural products have not been well elucidated. In this study, we aimed to investigate the anticancer activity of natural products isolated from Zooshikella sp., a marine bacterial species producing red pigments. By assessing the viability and proliferation of cancer cell lines treated with various concentrations of purified extracts/compounds, we have identified several bioactive extracts/molecules from Zooshikella sp. with cell toxicity. Moreover, two of the pure compounds, prodigiosin (WYT1-70-6) and its analog 2-methyl-3-heptyl prodigiosin (WYT1-70-10), induced apoptosis in cancer cell lines, as judged by the site-specific cleavage of PARP. Additionally, our preliminary data have shown that prodigiosin, but not 2-methyl-3-heptyl prodigiosin, inhibited TNFα induced NF-κB nuclear translocation and activation in the RPMI 8226 multiple myeloma cell line. Finally, we demonstrated that prodigiosin in combination with bortezomib had synergistic cell toxicity. In summary, results from this study suggested that marine natural product prodigiosin isolated from Zooshikella sp. exerts anticancer activity and additive interaction with bortezomib by targeting the transcription factor NF-κB signaling pathway.
CONTENTS

Abstract (Chinese)……………………………….…………………………………….i
Abstract (English)………………………………………………………..……………ii
Acknowledgement .........................................................................................................iii
Contents………………………………………………………………………………iv
List of Figures……………………………………...………………………………...vii
Appendix…………………………………………...……………………………… .viii
List of Abbreviations………………………………………………………..………...ix

Chapter 1. Introduction
1.1. Natural products 1
1.1.1. The sources of natural products 1
1.1.2. The value of application in clinical 3
1.2. NF-κB signal transduction pathway 3
1.2.1. Components and function of NF-κB complex 5
1.2.2. The IκB family 6
1.2.3. The IκB kinase (IKK) complex 7
1.2.4. Activation of NF-κB signaling pathway 8
1.2.4.1. Tumor necrosis factor receptor (TNFR) 9
1.2.4.2. Toll/interleukin-1 receptor (TIR) 9
1.2.4.3. T-cell receptor and B-cell receptor (TCR and BCR) 10
1.3. Inflammation and cancer 10
1.3.1. NF-κB dysregulation and caner 11
1.4. Multiple myeloma 13
1.4.1. NF-κB and multiple myeloma 13
1.4.2. The treatment of multiple myeloma 14
Specific aims 16

Materials and Methods
2.1. Materials 17
2.1.1. Chemicals and reagents 17
2.1.2. Equipment and materials 20
2.1.3. Buffers 21
2.2. Cell culture 22
2.2.1. Cell lines 22
2.2.2. General culturing of cells 22
2.3 Cell viability assay 22
2.4. Cell treatment 23
2.4.1. NF-κB inhibition treatment 23
2.4.2. Cell apoptosis treatment 24
2.5. Preparation of whole cell lysates and nuclear extract 24
2.5.1. Preparation of whole cell lysates 24
2.5.2. Preparation of nuclear extracts 24
2.6. SDS-polyacrylamide gel electrophoresis 25
2.7. Western blot analysis 26
2.8. Electrophoretic mobility shift assay (EMSA) 27

Chapter 3. Results
3.1. Transcription factor NF-κB inhibitor screening from marine natural products 29
3.2. WYT1-33-6 inhibits NF-κB activation by blocking IκBα phosphorylation and NF-κB nuclear translocation in TNFα-induced NIH3T3 cells 29
3.3. WYT1-33-6 inhibits cell viability and induces apoptosis in the human cervical cancer HeLa cells 30
3.4. Major bioactive components of WYT1-33-6, WYT170-6 (prodigiosin) and WYT1-70-10 (a prodigiosin analog), are cytotoxins in multiple myeloma cells 32
3.5. The DNA binding ability of NF-κB is inhibited by WYT1-70-6 through blocking NF-κB translocation in human multiple myeloma RPMI 8226 cells 33
3.6. Evaluating the cell killing effect of WYT1-70-6 in combination with clinical agents for treating multiple myeloma 34

Chapter 4. Discussion
4.1. Marine microorganism Zooshikella sp., a new source of prodiginine family 36
4.2. Prodigiosin has gotten attention again as an anticancer agent in recent years 36
4.3. Prodigiosin inhibits NF-κB signaling pathway in cancer cells 37
4.4. Prodigiosin in combination with bortezomib exert synergistic cell toxicity in hu-man multiple myeloma cells 37

Reference 39

Adachi, O., Kawai, T., Takeda, K., Matsumoto, M., Tsutsui, H., Sakagami, M., Nakanishi, K., and Akira, S. (1998). Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143-150.
Aggarwal, B. B. (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nature reviews Immunology 3, 745-756.
Aggarwal, B. B., and Gehlot, P. (2009). Inflammation and cancer: how friendly is the relationship for cancer patients? Current opinion in pharmacology 9, 351-369.
Aggarwal, B. B., Vijayalekshmi, R. V., and Sung, B. (2009). Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 425-430.
Ahn, K. S., Sethi, G., and Aggarwal, B. B. (2007). Nuclear factor-kappa B: from clone to clinic. Current molecular medicine 7, 619-637.
Amado, N. G., Fonseca, B. F., Cerqueira, D. M., Neto, V. M., and Abreu, J. G. (2011). Flavonoids: potential Wnt/beta-catenin signaling modulators in cancer. Life sciences 89, 545-554.
Anand, P., Kunnumakkara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., and Aggarwal, B. B. (2008). Cancer is a preventable disease that requires major lifestyle changes. Pharmaceutical research 25, 2097-2116.
Annunziata, C. M., Davis, R. E., Demchenko, Y., Bellamy, W., Gabrea, A., Zhan, F., Lenz, G., Hanamura, I., Wright, G., Xiao, W., et al. (2007). Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer cell 12, 115-130.
Basseres, D. S., and Baldwin, A. S. (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25, 6817-6830.
Beg, A. A., Sha, W. C., Bronson, R. T., Ghosh, S., and Baltimore, D. (1995). Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376, 167-170.
Bonizzi, G., and Karin, M. (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in immunology 25, 280-288.
Cheng, G., and Xie, L. (2011). Parthenolide induces apoptosis and cell cycle arrest of human 5637 bladder cancer cells in vitro. Molecules 16, 6758-6768.
Coussens, L. M., and Werb, Z. (2001). Inflammatory cells and cancer: think different! The Journal of experimental medicine 193, F23-26.
D'Incalci, M., and Galmarini, C. M. (2010). A review of trabectedin (ET-743): a unique mechanism of action. Molecular cancer therapeutics 9, 2157-2163.
Dejardin, E., Droin, N. M., Delhase, M., Haas, E., Cao, Y., Makris, C., Li, Z. W., Karin, M., Ware, C. F., and Green, D. R. (2002). The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17, 525-535.
Dobrzanski, P., Ryseck, R. P., and Bravo, R. (1994). Differential interactions of Rel-NF-kappa B complexes with I kappa B alpha determine pools of constitutive and inducible NF-kappa B activity. The EMBO journal 13, 4608-4616.
Dolgin, E. (2011). Stem cells: Transplants on trial. Nature 480, S46-47.
Ghosh, S., and Karin, M. (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl, S81-96.
Ghosh, S., May, M. J., and Kopp, E. B. (1998). NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annual review of immunology 16, 225-260.
Glaser, K. B. (2007). HDAC inhibitors: clinical update and mechanism-based potential. Biochemical pharmacology 74, 659-671.
Gordaliza, M. (2007). Natural products as leads to anticancer drugs. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 9, 767-776.
Guzman, E. A., Johnson, J. D., Linley, P. A., Gunasekera, S. E., and Wright, A. E. (2011). A novel activity from an old compound: Manzamine A reduces the metastatic potential of AsPC-1 pancreatic cancer cells and sensitizes them to TRAIL-induced apoptosis. Investigational new drugs 29, 777-785.
Han, S. B., Kim, H. M., Kim, Y. H., Lee, C. W., Jang, E. S., Son, K. H., Kim, S. U., and Kim, Y. K. (1998). T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens. International journal of immunopharmacology 20, 1-13.
Hatada, E. N., Nieters, A., Wulczyn, F. G., Naumann, M., Meyer, R., Nucifora, G., McKeithan, T. W., and Scheidereit, C. (1992). The ankyrin repeat domains of the NF-kappa B precursor p105 and the protooncogene bcl-3 act as specific inhibitors of NF-kappa B DNA binding. Proceedings of the National Academy of Sciences of the United States of America 89, 2489-2493.
Hayden, M. S., and Ghosh, S. (2004). Signaling to NF-kappaB. Genes & development 18, 2195-2224.
Hehner, S. P., Hofmann, T. G., Droge, W., and Schmitz, M. L. (1999). The antiinflammatory sesquiterpene lactone parthenolide inhibits NF-kappa B by targeting the I kappa B kinase complex. J Immunol 163, 5617-5623.
Heider, U., Hofbauer, L. C., Zavrski, I., Kaiser, M., Jakob, C., and Sezer, O. (2005). Novel aspects of osteoclast activation and osteoblast inhibition in myeloma bone disease. Biochemical and biophysical research communications 338, 687-693.
Hideshima, T., Ikeda, H., Chauhan, D., Okawa, Y., Raje, N., Podar, K., Mitsiades, C., Munshi, N. C., Richardson, P. G., Carrasco, R. D., and Anderson, K. C. (2009). Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114, 1046-1052.
Hideshima, T., Mitsiades, C., Tonon, G., Richardson, P. G., and Anderson, K. C. (2007). Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nature reviews Cancer 7, 585-598.
Hideshima, T., Neri, P., Tassone, P., Yasui, H., Ishitsuka, K., Raje, N., Chauhan, D., Podar, K., Mitsiades, C., Dang, L., et al. (2006). MLN120B, a novel IkappaB kinase beta inhibitor, blocks multiple myeloma cell growth in vitro and in vivo. Clinical cancer research : an official journal of the American Association for Cancer Research 12, 5887-5894.
Hoffmann, A., Leung, T. H., and Baltimore, D. (2003). Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. The EMBO journal 22, 5530-5539.
Hoffmann, A., Levchenko, A., Scott, M. L., and Baltimore, D. (2002). The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science 298, 1241-1245.
Hsieh, H. Y., Shieh, J. J., Chen, C. J., Pan, M. Y., Yang, S. Y., Lin, S. C., Chang, J. S., Lee, A. Y., and Chang, C. C. (2012). Prodigiosin down-regulates SKP2 to induce p27(KIP1) stabilization and antiproliferation in human lung adenocarcinoma cells. British journal of pharmacology 166, 2095-2108.
Huang, T. T., Kudo, N., Yoshida, M., and Miyamoto, S. (2000). A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proceedings of the National Academy of Sciences of the United States of America 97, 1014-1019.
Huh, J. E., Yim, J. H., Lee, H. K., Moon, E. Y., Rhee, D. K., and Pyo, S. (2007). Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK, JNK and NF-kappaB activation in murine peritoneal macrophages. International immunopharmacology 7, 1825-1833.
Huynh, Q. K., Boddupalli, H., Rouw, S. A., Koboldt, C. M., Hall, T., Sommers, C., Hauser, S. D., Pierce, J. L., Combs, R. G., Reitz, B. A., et al. (2000). Characterization of the recombinant IKK1/IKK2 heterodimer. Mechanisms regulating kinase activity. The Journal of biological chemistry 275, 25883-25891.
Hwang, I., Choi, Y. S., Jeon, M. Y., and Jeong, S. (2010). NF-kappaB p65 represses beta-catenin-activated transcription of cyclin D1. Biochemical and biophysical research communications 403, 79-84.
Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., and Thun, M. J. (2007). Cancer statistics, 2007. CA: a cancer journal for clinicians 57, 43-66.
Johnson, C., Van Antwerp, D., and Hope, T. J. (1999). An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IkappaBalpha. The EMBO journal 18, 6682-6693.
Jung, H. J., Chen, Z., Fayad, L., Wang, M., Romaguera, J., Kwak, L. W., and McCarty, N. (2012). Bortezomib-resistant nuclear factor kappaB expression in stem-like cells in mantle cell lymphoma. Experimental hematology 40, 107-118 e102.
Karin, M., and Ben-Neriah, Y. (2000). Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annual review of immunology 18, 621-663.
Kawai, T., Adachi, O., Ogawa, T., Takeda, K., and Akira, S. (1999). Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115-122.
Keats, J. J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W. J., Van Wier, S., Tiedemann, R., Shi, C. X., Sebag, M., et al. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer cell 12, 131-144.
Khoshnan, A., Bae, D., Tindell, C. A., and Nel, A. E. (2000). The physical association of protein kinase C theta with a lipid raft-associated inhibitor of kappa B factor kinase (IKK) complex plays a role in the activation of the NF-kappa B cascade by TCR and CD28. J Immunol 165, 6933-6940.
Klement, J. F., Rice, N. R., Car, B. D., Abbondanzo, S. J., Powers, G. D., Bhatt, P. H., Chen, C. H., Rosen, C. A., and Stewart, C. L. (1996). IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Molecular and cellular biology 16, 2341-2349.
Lee, J. S., Kim, Y. S., Park, S., Kim, J., Kang, S. J., Lee, M. H., Ryu, S., Choi, J. M., Oh, T. K., and Yoon, J. H. (2011). Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1. Applied and environmental microbiology 77, 4967-4973.
Lernbecher, T., Kistler, B., and Wirth, T. (1994). Two distinct mechanisms contribute to the constitutive activation of RelB in lymphoid cells. The EMBO journal 13, 4060-4069.
Li, C. J., Guo, S. F., and Shi, T. M. (2012). Culture supernatants of breast cancer cell line MDA-MB-231 treated with parthenolide inhibit the proliferation, migration, and lumen formation capacity of human umbilical vein endothelial cells. Chinese medical journal 125, 2195-2199.
Li, Q., Van Antwerp, D., Mercurio, F., Lee, K. F., and Verma, I. M. (1999a). Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284, 321-325.
Li, Z. W., Chu, W., Hu, Y., Delhase, M., Deerinck, T., Ellisman, M., Johnson, R., and Karin, M. (1999b). The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. The Journal of experimental medicine 189, 1839-1845.
Liang, M. C., Bardhan, S., Li, C., Pace, E. A., Porco, J. A., Jr., and Gilmore, T. D. (2003). Jesterone dimer, a synthetic derivative of the fungal metabolite jesterone, blocks activation of transcription factor nuclear factor kappaB by inhibiting the inhibitor of kappaB kinase. Molecular pharmacology 64, 123-131.
Liang, M. C., Bardhan, S., Pace, E. A., Rosman, D., Beutler, J. A., Porco, J. A., Jr., and Gilmore, T. D. (2006). Inhibition of transcription factor NF-kappaB signaling proteins IKKbeta and p65 through specific cysteine residues by epoxyquinone A monomer: correlation with its anti-cancer cell growth activity. Biochemical pharmacology 71, 634-645.
Lichstein, H. C., and Van De Sand, V. F. (1946). The Antibiotic Activity of Violacein, Prodigiosin, and Phthiocol. Journal of bacteriology 52, 145-146.
Llagostera, E., Soto-Cerrato, V., Montaner, B., and Perez-Tomas, R. (2003). Prodigiosin induces apoptosis by acting on mitochondria in human lung cancer cells. Annals of the New York Academy of Sciences 1010, 178-181.
Los, M., Roodhart, J. M., and Voest, E. E. (2007). Target practice: lessons from phase III trials with bevacizumab and vatalanib in the treatment of advanced colorectal cancer. The oncologist 12, 443-450.
Magae, J., Yamashita, M., and Nagai, K. (1993). Suppression of alloantigen presentation by prodigiosin, a T cell-specific immunosuppressant. Annals of the New York Academy of Sciences 685, 339-340.
Malek, S., Chen, Y., Huxford, T., and Ghosh, G. (2001). IkappaBbeta, but not IkappaBalpha, functions as a classical cytoplasmic inhibitor of NF-kappaB dimers by masking both NF-kappaB nuclear localization sequences in resting cells. The Journal of biological chemistry 276, 45225-45235.
Malek, S., Huang, D. B., Huxford, T., Ghosh, S., and Ghosh, G. (2003). X-ray crystal structure of an IkappaBbeta x NF-kappaB p65 homodimer complex. The Journal of biological chemistry 278, 23094-23100.
Markovina, S., Callander, N. S., O'Connor, S. L., Kim, J., Werndli, J. E., Raschko, M., Leith, C. P., Kahl, B. S., Kim, K., and Miyamoto, S. (2008). Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Molecular cancer research : MCR 6, 1356-1364.
Markovina, S., Callander, N. S., O'Connor, S. L., Xu, G., Shi, Y., Leith, C. P., Kim, K., Trivedi, P., Kim, J., Hematti, P., and Miyamoto, S. (2010). Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-kappaB activity in myeloma cells. Molecular cancer 9, 176.
Meier, P., Finch, A., and Evan, G. (2000). Apoptosis in development. Nature 407, 796-801.
Messori, A., Maratea, D., Nozzoli, C., and Bosi, A. (2011). The role of bortezomib, thalidomide and lenalidomide in the management of multiple myeloma: an overview of clinical and economic information. PharmacoEconomics 29, 269-285.
Michels, J., Johnson, P. W., and Packham, G. (2005). Mcl-1. The international journal of biochemistry & cell biology 37, 267-271.
Mimeault, M., Johansson, S. L., and Batra, S. K. (2012). Pathobiological implications of the expression of EGFR, pAkt, NF-kappaB and MIC-1 in prostate cancer stem cells and their progenies. PloS one 7, e31919.
Montaner, B., Castillo-Avila, W., Martinell, M., Ollinger, R., Aymami, J., Giralt, E., and Perez-Tomas, R. (2005). DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicological sciences : an official journal of the Society of Toxicology 85, 870-879.
Montaner, B., and Perez-Tomas, R. (2001). Prodigiosin-induced apoptosis in human colon cancer cells. Life sciences 68, 2025-2036.
Montaner, B., and Perez-Tomas, R. (2002). Prodigiosin induces caspase-9 and caspase-8 activation and cytochrome C release in Jurkat T cells. Annals of the New York Academy of Sciences 973, 246-249.
Moreaux, J., Veyrune, J. L., De Vos, J., and Klein, B. (2009). APRIL is overexpressed in cancer: link with tumor progression. BMC cancer 9, 83.
Mortellaro, A., Songia, S., Gnocchi, P., Ferrari, M., Fornasiero, C., D'Alessio, R., Isetta, A., Colotta, F., and Golay, J. (1999). New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation. J Immunol 162, 7102-7109.
Mukherjee, A. K., Basu, S., Sarkar, N., and Ghosh, A. C. (2001). Advances in cancer therapy with plant based natural products. Current medicinal chemistry 8, 1467-1486.
Nakamura, A., Nagai, K., Ando, K., and Tamura, G. (1986). Selective suppression by prodigiosin of the mitogenic response of murine splenocytes. The Journal of antibiotics 39, 1155-1159.
Nakano, H., Sakon, S., Koseki, H., Takemori, T., Tada, K., Matsumoto, M., Munechika, E., Sakai, T., Shirasawa, T., Akiba, H., et al. (1999). Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proceedings of the National Academy of Sciences of the United States of America 96, 9803-9808.
Newman, D. J., and Cragg, G. M. (2007). Natural products as sources of new drugs over the last 25 years. Journal of natural products 70, 461-477.
Noma, N., Simizu, S., Kambayashi, Y., Kabe, Y., Suematsu, M., and Umezawa, K. (2012). Involvement of NF-kappaB-mediated expression of galectin-3-binding protein in TNF-alpha-induced breast cancer cell adhesion. Oncology reports 27, 2080-2084.
Oh, H., Jensen, P. R., Murphy, B. T., Fiorilla, C., Sullivan, J. F., Ramsey, T., and Fenical, W. (2010). Cryptosphaerolide, a cytotoxic Mcl-1 inhibitor from a marine-derived ascomycete related to the genus Cryptosphaeria. Journal of natural products 73, 998-1001.
Rao, P., Hayden, M. S., Long, M., Scott, M. L., West, A. P., Zhang, D., Oeckinghaus, A., Lynch, C., Hoffmann, A., Baltimore, D., and Ghosh, S. (2010). IkappaBbeta acts to inhibit and activate gene expression during the inflammatory response. Nature 466, 1115-1119.
Richardson, P. G., Laubach, J. P., Schlossman, R. L., Ghobrial, I. M., Redman, K. C., McKenney, M., Warren, D., Noonan, K., Lunde, L., Doss, D., et al. (2012). The potential benefits of participating in early-phase clinical trials in multiple myeloma: long-term remission in a patient with relapsed multiple myeloma treated with 90 cycles of lenalidomide and bortezomib. European journal of haematology 88, 446-449.
Rodriguez-Berriguete, G., Fraile, B., Paniagua, R., Aller, P., and Royuela, M. (2012). Expression of NF-kappaB-related proteins and their modulation during TNF-alpha-provoked apoptosis in prostate cancer cells. The Prostate 72, 40-50.
Roodman, G. D. (2009). Pathogenesis of myeloma bone disease. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, UK 23, 435-441.
Ruland, J., and Mak, T. W. (2003). Transducing signals from antigen receptors to nuclear factor kappaB. Immunological reviews 193, 93-100.
Ryseck, R. P., Bull, P., Takamiya, M., Bours, V., Siebenlist, U., Dobrzanski, P., and Bravo, R. (1992). RelB, a new Rel family transcription activator that can interact with p50-NF-kappa B. Molecular and cellular biology 12, 674-684.
Sanchez, E., Shen, J., Steinberg, J., Li, M., Wang, C., Bonavida, B., Chen, H., Li, Z. W., and Berenson, J. R. (2011). The histone deacetylase inhibitor LBH589 enhances the anti-myeloma effects of chemotherapy in vitro and in vivo. Leukemia research 35, 373-379.
Satoh, M., Oguro, R., Yamanaka, C., Takada, K., Matsuura, Y., Akiba, T., Aotsuka, N., Tani, Y., and Wakita, H. (2011). Clinical assessment of bortezomib for multiple myeloma in comparison with thalidomide. Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques 14, 78-89.
Schmidmaier, R., Baumann, P., Bumeder, I., Meinhardt, G., Straka, C., and Emmerich, B. (2007). First clinical experience with simvastatin to overcome drug resistance in refractory multiple myeloma. European journal of haematology 79, 240-243.
Schumacher, M., Kelkel, M., Dicato, M., and Diederich, M. (2011). A survey of marine natural compounds and their derivatives with anti-cancer activity reported in 2010. Molecules 16, 5629-5646.
Senftleben, U., Cao, Y., Xiao, G., Greten, F. R., Krahn, G., Bonizzi, G., Chen, Y., Hu, Y., Fong, A., Sun, S. C., and Karin, M. (2001a). Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science 293, 1495-1499.
Senftleben, U., Li, Z. W., Baud, V., and Karin, M. (2001b). IKKbeta is essential for protecting T cells from TNFalpha-induced apoptosis. Immunity 14, 217-230.
Sethi, G., Sung, B., and Aggarwal, B. B. (2008). Nuclear factor-kappaB activation: from bench to bedside. Exp Biol Med (Maywood) 233, 21-31.
Sheehan, M., Wong, H. R., Hake, P. W., Malhotra, V., O'Connor, M., and Zingarelli, B. (2002). Parthenolide, an inhibitor of the nuclear factor-kappaB pathway, ameliorates cardiovascular derangement and outcome in endotoxic shock in rodents. Molecular pharmacology 61, 953-963.
Silverman, N., and Maniatis, T. (2001). NF-kappaB signaling pathways in mammalian and insect innate immunity. Genes & development 15, 2321-2342.
Solan, N. J., Miyoshi, H., Carmona, E. M., Bren, G. D., and Paya, C. V. (2002). RelB cellular regulation and transcriptional activity are regulated by p100. The Journal of biological chemistry 277, 1405-1418.
Steel, G. G., and Peckham, M. J. (1979). Exploitable mechanisms in combined radiotherapy-chemotherapy: the concept of additivity. International journal of radiation oncology, biology, physics 5, 85-91.
Sun, D. D., Wang, W. Z., Mao, J. W., Mei, W. J., and Liu, J. (2012). Imidazo [4,5f][1,10] phenanthroline derivatives as inhibitor of c-myc gene expression in A549 cells via NF-kappaB pathway. Bioorganic & medicinal chemistry letters 22, 102-105.
Sun, L., Deng, L., Ea, C. K., Xia, Z. P., and Chen, Z. J. (2004). The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Molecular cell 14, 289-301.
Sun, Z., Arendt, C. W., Ellmeier, W., Schaeffer, E. M., Sunshine, M. J., Gandhi, L., Annes, J., Petrzilka, D., Kupfer, A., Schwartzberg, P. L., and Littman, D. R. (2000). PKC-theta is required for TCR-induced NF-kappaB activation in mature but not immature T lymphocytes. Nature 404, 402-407.
Tai, Y. T., Li, X. F., Breitkreutz, I., Song, W., Neri, P., Catley, L., Podar, K., Hideshima, T., Chauhan, D., Raje, N., et al. (2006). Role of B-cell-activating factor in adhesion and growth of human multiple myeloma cells in the bone marrow microenvironment. Cancer research 66, 6675-6682.
Tran, K., Merika, M., and Thanos, D. (1997). Distinct functional properties of IkappaB alpha and IkappaB beta. Molecular and cellular biology 17, 5386-5399.
Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell death and differentiation 10, 45-65.
Weih, F., Carrasco, D., Durham, S. K., Barton, D. S., Rizzo, C. A., Ryseck, R. P., Lira, S. A., and Bravo, R. (1995). Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80, 331-340.
Weil, R., Laurent-Winter, C., and Israel, A. (1997). Regulation of IkappaBbeta degradation. Similarities to and differences from IkappaBalpha. The Journal of biological chemistry 272, 9942-9949.
Wu, H., and Arron, J. R. (2003). TRAF6, a molecular bridge spanning adaptive immunity, innate immunity and osteoimmunology. BioEssays : news and reviews in molecular, cellular and developmental biology 25, 1096-1105.
Xiang, Y., Remily-Wood, E. R., Oliveira, V., Yarde, D., He, L., Cheng, J. Q., Mathews, L., Boucher, K., Cubitt, C., Perez, L., et al. (2011). Monitoring a nuclear factor-kappaB signature of drug resistance in multiple myeloma. Molecular & cellular proteomics : MCP 10, M110 005520.
Xiao, G., Fong, A., and Sun, S. C. (2004). Induction of p100 processing by NF-kappaB-inducing kinase involves docking IkappaB kinase alpha (IKKalpha) to p100 and IKKalpha-mediated phosphorylation. The Journal of biological chemistry 279, 30099-30105.
Yadav, B., Taurin, S., Rosengren, R. J., Schumacher, M., Diederich, M., Somers-Edgar, T. J., and Larsen, L. (2010). Synthesis and cytotoxic potential of heterocyclic cyclohexanone analogues of curcumin. Bioorganic & medicinal chemistry 18, 6701-6707.
Yang, D. T., Young, K. H., Kahl, B. S., Markovina, S., and Miyamoto, S. (2008). Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Molecular cancer 7, 40.
Zhong, H., May, M. J., Jimi, E., and Ghosh, S. (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Molecular cell 9, 625-636.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top