跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 08:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳信助
研究生(外文):Chen, Hsin-Chu
論文名稱:高效率敏化之太陽能光電元件
論文名稱(外文):Highly Efficient Hybrid Photovoltaic Devices
指導教授:郭浩中郭浩中引用關係林建中林建中引用關係
指導教授(外文):Kuo, Hao-ChungLin, Chien-Chung
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:79
中文關鍵詞:太陽能電池量子點
外文關鍵詞:Solar cellQuantum dots
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,具優越物理與化學特性之量子點材料發展迅速。其受到量子侷限效應影響,藉由調控量子點粒徑大小可得到不同發光波長。於過去研究中,相當多量子點材料應用於光電元件上,例如:發光二極體、背光顯示器、光偵測器與生醫光電等。於本研究中,我們成功設計一個新穎與高效率之混合型敏化太陽能電池,主要利用量子點獨特之吸光-發光特性,應用於單晶矽與砷化鎵太陽能電池表面上,可降低元件表面反射率、增加元件紫外光線收集機率與改善元件表面上載子傳輸特性。
於第一部份研究中,我們成功利用量子點改善單晶矽奈米柱陣列太陽能電池轉換效率,透過膠體微影術與離子反應蝕刻技術製作單晶矽奈米柱陣列,再結合量子點形成太陽能電池,於標準模擬太陽光條件照射下,結果顯示較高之功率轉換效率,相較於無量子點太陽能電池提升約為33%。由實驗分析結果顯示,其元件效率提升主要的機制為光子向下轉換機制、抗反射機制與表面載子傳輸之改善,此些特性皆為量子點層之作用。
於第二部份研究中,為驗證量子點材料是否可應用於其它型態之太陽能電池上,故我們量子點應用於傳統的砷化鎵太陽能電池表面上,使元件成為新穎混合型敏化的太陽能電池結構。藉由應用量子點於砷化鎵太陽能電池表面,於長波段區域可獲得有效抗反射機制,以及於短波長下獲得光子下轉換機制,原因可歸納為量子點於短波長下具較強之吸收並且同時轉換出可見光波段給太陽能電池所吸收,故相較於傳統無量子點之砷化鎵太陽能電池,光電轉換效率可提升18.9%。
於第三部份研究中,(由於過多量子點於使用下會造成自聚集現象,進而影響光子下轉換機制)我們有效減少過多量子點於使用下所造成自聚集現象,進而提升光子的下轉換機制。故我們使用可饒式矽氧樹脂薄膜製作出雙層量子點層並且成功應用於砷化鎵太陽能電池上。其中,將透過旋轉塗佈方式製作出之矽氧樹脂薄膜,之後引入量子點內形成層堆疊之雙層量子點層。而雙層量子點砷化鎵太陽能電池相較於傳統無量子點之砷化鎵太陽能電池可提高轉換效率高達22%。最後,由於量子點材料具可提升任何型態之太陽能電池轉換效率,未來極具潛力成為下一世紀新穎混合型敏化太陽能電池元件。

Quantum dots (QDs) material in recent years has rapidly developed because of exhibiting superior physics and chemicals properties. Significantly, QDs has the unique and the size-dependent absorption with emission properties due to quantum confinement effect. Therefore, in the past, there are many applications of QDs in optoelectronic devices, such as light-emitting diodes, backlight modules, photo-detectors, and bio-photonics. In this work, we successfully designed a novel and highly efficient hybrid solar cells. By applying the QDs material in traditional Si-based and GaAs-based solar cells to improve the surface reflection, light harvesting in ultraviolet region, and surface carrier collection properties.
First part, we improved the power efficiency of the crystalline silicon (c-Si) solar cell with nanopillar arrays (NPAs) by deployment of QDs. The NPAs was fabricated by the colloidal lithography and reactive-ion etching techniques. Under a simulated one-sun condition, the device with QDs shows a 33% improvement of power conversion efficiency, compared with the one without QDs. It is noteworthy that the enhancement of efficiency could be attributed to the luminescent down-shifting, the antireflection, and the improved surface electrical property. Second part, to find out whether this hybrid type fabrication can be applied to other solar cell; we demonstrate a hybrid design of traditional GaAs-based solar cell combined with QDs. With anti-reflective feature at long wavelength and luminescent down-shifting at UV regime, the QDs effectively enhance the overall power conversion efficiency by as high as 18.9% compared to traditional GaAs-based device. Third part, we effectively alleviate the self-assembly phenomenon in high dosage of QDs and enhanced the luminescent down-shifting effect. This study demonstrates the high performance of GaAs solar cells with dual-layer QDs carried by flexible polydimethylsiloxane (PDMS) film. The flexible PDMS film was fabricated using the spin-coating technique, and was then used to embed dual-layer QDs. The proposed scheme enhances power conversion efficiency by 22%, compared to a GaAs solar cell without CdS QDs. Finally, this study shows the potential possibility method using QDs material in solar cells, which could increase the power conversion efficiency for any kind of solar cells, and should be considered for the design of next-generation solar cells.

Abstract (in Chinese)………………………………………….…………………....................i
Abstract (in English)………………………………………..…………………...…………iii
Acknowledgement…………………………………………..…………………...…………v
Content…………...………………………………………………...………….……………...vi
List of Figures…...…...……………………………………………….…...……….………..viii
List of Tables…..……………………………….…………………………...……….……….xii

Chapter 1 Introduction……………………...............................................................1
1-1 Characteristic of Quantum dot Materials……………………………………………...2
1-2 Synthetic method of Quantum dots…………...………………………………………5
1-3 Quantum dots applied for Solar cell...………...………………………………………7
1-4 Over-view of the thesis……………….……………………………………………...10
Chapter 2 Physical principle of solar cell…..………...………………………………….…13
2-1 The working principle of solar cell……………......…..…………..…………………13
2-2 The fundamental principles of solar cell………..………..………..………………14
2-3 The parameter of solar cell…………………………………………………………..18
2-3.1 Short-circuit current density………………………………………….…….…18
2-3.2 Open-circuit voltage……………………………………………...……..…….19
2-3.3 Fill factor…………………………………………………………………..….19
2-3.4 Power conversion efficiency………………………………………………….19
2-3.5 Quantum efficiency…………………………………………………………...20
2-4 Current density calculation……………………………………..……………..……21
Chapter 3 Experimental and Measured Instrument……………………………….…..…22
3-1 Scanning Electron Microscope………………………………………………..……22
3-2 Transmission electron microscope…………………………………………………...23
3-3 Angle resolved Integrating sphere reflectance measurement……………………...24
3-4 Current-voltage measurement…………...……………………...……………………26
3-5 External quantum efficiency measurement…………………………………………..27
3-6 Photoluminescence measurement……………………………………………………28
Chapter 4 Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layer…………………………………………………………………………………………..30
4-1 Introduction…………………………………………………...……………………...30
4-2 Process and structure……………………………………………………………...…31
4-3 Photoluminescence and reflectance measurement………………………………...…33
4-4 Measurement and analysis…………………………………………………………34
4-5 Contribution of luminescent down-shift effect……………………………………....37
4-6 Summary……………………………………………………………………………..38
Chapter 5 Highly efficient CdS-quantum-dot-sensitized GaAs solar cells…………………………………………...………………………………………………39
5-1 Introduction………………………………………………………………………..…39
5-2 Experiment and device design……………………………….………………………40
5-3 Device results and discussion……………………………………………………..…43
5-4 Calculation of luminescent down-shift effect………………………………………..45
5-5 Device characterization……………………………………………………………...46
5-6 Summary…………………………………………………………………………..…49
Chapter 6 Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film………………………………………50
6-1 Introduction……………..……………………………………………………………50
6-2 Experiment and device design………………..…………………...…………………51
6-3 Photoluminescence and SEM measurement……………………………………….53
6-4 Measurement and analysis…………………………………………………………...54
6-5 Calculation of luminescent down-shift effect………………………………………..57
6-6 Summary……………………………………………………………………………..58
Chapter 7 Conclusion and Future work.………………………………………………......59
7-1 Conclusion….…………..……………………………………………………………59
7-2 Future work…………………………………………………………………………..60
Reference………………………………………………………………………………..……64
Publication list………………………………………………………………………..……74

[1] S. Coe, W. K. Woo, M. Bawendi, V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002).
[2] L. D. Huang, C. C. Tu, L. Y. Lin, “Colloidal quantum dot photodetectors enhanced by self-assembled plasmonic nanoparticles,” Appl. Phys. Lett. 98, 113110 (2011).
[3] C. Y. Huang, D. Y. Wang, C. H. Wang, Y. T. Chen, Y. T. Wang, Y. T. Jiang, Y. J. Yang, C. C. Chen, Y. F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” Acs Nano 4(10), 5849–5854 (2010).
[4] Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as Precursor,” J. Am. Chem. Soc. 123(1), 183–184 (2001).
[5] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996).
[6] A. Catarina, C. Esteves, and T. Trindade, “Synthetic studies on II/VI semiconductor quantum dots,” Curr. Opin. Solid State Mater. 6, 347–353 (2002).
[7] D. Wang, A. L. Rogach, and F. Caruso, “Semicondutor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Lett. 2(8), 857–861 (2002).
[8] M. Illing, G. Bacher, T. Kummell, A. Forchel, D. Hommel, B. Jobst, and G. Landwehr, “Fabrication of CdZnSe/ZnSe quantum dots and quantum wires by electron beam lithography and wet chemical etching,” J. Vac. Sci. Technol. B 13(6), 2792–2796 (1995).
[9] C. Livermore, C. H. Crouch, T. Kummell, A. Forchel, D. Hommel, B. Jobst, and G. Landwehr, “Fabrication of CdZnSe/ZnSe quantum dots and quantum wires by electron beam lithography and wet chemical etching,” Science 274(5291), 1332–1335 (1995).
[10] C. Y. Shen, K. Li, Q. I. Hou, H. J. Feng, and X. Y. Dong, “White LED based on YAG: Ce,Gd phosphor and CdSe-ZnS core/shell quantum dots,” IEEE Photonic Tech. L. 22(12), 884–886 (2010).
[11] S. Cingarapu, Z. Yang, C. M. Sorensen, and K. J. Klabunde, “Synthesis of CdSe/ZnS and CdTe/ZnS quantum dots: refined digestive ripening,” Journal of Nanomateroals, 2012, 312087 (2012).
[12] C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005).
[13] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008).
[14] D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000).
[15] W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983).
[16] D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52, 79–93 (1998).
[17] J. H. Zhao, A. H. Wang, P. P. Altermatt, S. R. Wenham, M. A. Green, “24% efficient PERL silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 41, 87–99 (1996).
[18] J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002).
[19] Y. A. Chang, Z. Y. Li, H. C. Kuo, T. C. Lu, S. F. Yang, L. W. Lai, L. H. Lai, S. C. Wang, “Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process,” Semicond. Sci. Technol. 8(24), 085007-085010 (2009).
[20] K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009).
[21] T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008).
[22] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(S3), A286–A292 (2010).
[23] P. C. Tseng, P. C. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95, 2610–2615 (2011).
[24] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109–133111 (2008).
[25] J. Li, H. Y. Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102–033104 (2009).
[26] Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142–143 (2001).
[27] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[28] C. Chang, P. Yu, and C. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett. 94(5), 051114–051117 (2009).
[29] G. R. Lin, Y. C. Chang, E. S. Liu, H. C. Kuo, and H. S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett. 90(18), 181923–181925 (2007) .
[30] M. A. Tsai, P. C. Tseng, H. C. Chen, H. C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express 19(S1), A28–A34 (2011).
[31] S. F. Rowlands, J. Livingstone, and C. P. Lund, “Optical modelling of thin film solar cells with textured interfaces using the effective medium approximation,” Sol. Energy 76 (1-3), 301–307 (2003).
[32] M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,ˮ Bioscience, 29, 520-525 (1979).
[33] H. C. Chen, C. C. Lin, Hao-Wei Han, Yu-Lin Tsai, Chia-Hua Chang, Hsun-Wen Wang, Min-An Tsai, Hao-Chung Kuo, and Peichen Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,ˮ Opt. Express, 19 (S5), A1141–A1147 (2011).
[34] C. C. Lin, H. C. Chen, Y. L. Tsai, H. V. Han, H. S. Shih, Y. A. Chang, H. C. Kuo, P. C. Yu, “Highly efficient CdS-quantum-dot-sensitized GaAs solar cells,” Opt. Express 20(S2), A319–A326 (2012).
[35] H. C. Chen, C. C. Lin, H. V. Han, K. J. Chen, Y. L. Tsai, Y. A. Chang, M. H. Shih, H. C. Kuo, and P. C. Yu, “Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film,” Sol. Energy Mater. Sol. Cells 104, 92–96 (2012).
[36] M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,ˮ J. Mater. Sci.: Mater. Electron. 18, S15–S19 (2007).
[37] S. Siebentritt, “Wide gap chalcopyrites: material properties and solar cells,ˮ Thin Solid Films, 403-404, 1–8 (2002).
[38] R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,ˮ Thin Solid Films 480-481, 509–514, (2005).
[39] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells tuning photoresponse through size and shape control of CdSe−TiO2 architecture,ˮ J. Am. Chem. Soc. 130(12), 4007–4015 (2008).
[40] S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,ˮ J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[41] Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: A method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,ˮ Adv. Funct. Mater. 18(11), 1654–1660 (2008).
[42] K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,ˮ Energies 2(3), 504–530 (2009).
[43] C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-Junction III–V based concentrator solar cells: perspectives and challenges,ˮ Journal of solar energy engineering 129, 258–265 (2007).
[44] T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells,ˮ Appl. Phys. Lett. 70(3), 381–383 (1997).
[45] S. Sze and K. Ng, Physics of semiconductor devices: Wiley-Blackwell (2007).
[46] D. Neamen, Semiconductor physics and devices: McGraw-Hill, Inc. New York, NY, USA (2002).
[47] 莊家琛,“太陽能工程-太陽能電池篇,”全華出版社 (2005)
[48] M. P. Thekackra, “The solar cell constant and solar spectrum measurement from a research aircraft,” NASA Technical Report, (1970)
[49] D. A. Neamen, “Semiconductor physics and devices,” (2003)
[50] M. A. Tsai, P. C. Yu, C. H. Chiu, H. C. Kuo, T. C. Lu, and S. H. Lin, “Self-Assembled two-dimensional surface structures for beam shaping of GaN-based vertical-injection light-emitting diodes,” IEEE Photon. Technol. Lett. 22(1), 12–14 (2010).
[51] X. H. Li, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[52] Y. K. Ee, P. Kumnorkaew, H. Tong, R. A. Arif, J. F. Gilchrist, and N. Tansu, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting Xiii 7231 (2009).
[53] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. P. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[54] Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107–221109 (2007).
[55] Y. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis, and J. Q. Xiao, “Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals,” J. Am. Chem. Soc. 126(22), 6874–6875 (2004).
[56] C. Y. Huang, D. Y. Wang, C. H. Wang, Y. T. Chen, Y. T. Wang, Y. T. Jiang, Y. J. Yang, C. C. Chen, and Y. F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips Solar Cells,” ACS Nano 4(10), 5849–5854 (2010).
[57] W. Guter, J. Schone, S. P. Philipps, M. Steiner, and G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,ˮ Appl. Phys. Lett. 94, 223504–223506 (2009).
[58] P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,ˮ Adv. Mater. 21, 1618–1621 (2009).
[59] M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,ˮ Bioscience 29(9), 520–525 (1979).
[60] Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,ˮ Nat. Photonics 1, 717–722 (2007).
[61] T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,ˮ J. Appl. Phys. 92, 1668–1674 (2002).
[62] E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,ˮ Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[63] E. Klampaftis, and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,ˮ Prog. Photovoltaics Res. Appl. 19(3), 345–351 (2011).
[64] C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrcek, C. d. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,ˮ Sol. Energy Mater. Sol. Cells, 91(4) 238–249 (2007).
[65] X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency, ˮ Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011).
[66] E. Mutlugun, I. M. Soganci, and H. V. Demir, “Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV,ˮ Opt. Express 15(3), 1128–1134 (2007).
[67] S. M. Sze, Physics of Semiconductor Devices (Wiley, 2nd Edition, 1981), Chap. 14.
[68] C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,ˮ Phys. Rev. B: Condens. Matter Mater. Phys. 62(4), 2669–2680 (2000).
[69] H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, Y. J. Cheng, “Patterned structure of REMOTE PHOSPHOR for phosphor-converted white LEDs,” Opt. Express 19(S4), A930–A936 (2011).
[70] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nature Mater. 5, 810–816 (2006).
[71] W. Walukiewicz, J. W. Ager, K. M. Yu, Z. Liliental-Weber, J. Wu, S. X. Li, R. E. Jones, and J. D. Denlinger, “Structure and electronic properties of InN and In-rich group III-nitride alloys,” J. Phys. D: Appl. Phys. 39(5), 83–99 (2006).
[72] D. Cherns, S. Henley, and F. Ponce, “Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence,” Appl. Phys. Lett. 78, 2691–2693 (2001).
[73] E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98, 021102–021104 (2011).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊