|
[1] S. Coe, W. K. Woo, M. Bawendi, V. Bulovic, “Electroluminescence from single monolayers of nanocrystals in molecular organic devices,” Nature 420, 800–803 (2002). [2] L. D. Huang, C. C. Tu, L. Y. Lin, “Colloidal quantum dot photodetectors enhanced by self-assembled plasmonic nanoparticles,” Appl. Phys. Lett. 98, 113110 (2011). [3] C. Y. Huang, D. Y. Wang, C. H. Wang, Y. T. Chen, Y. T. Wang, Y. T. Jiang, Y. J. Yang, C. C. Chen, Y. F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells,” Acs Nano 4(10), 5849–5854 (2010). [4] Z. A. Peng and X. Peng, “Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as Precursor,” J. Am. Chem. Soc. 123(1), 183–184 (2001). [5] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271(5251), 933–937 (1996). [6] A. Catarina, C. Esteves, and T. Trindade, “Synthetic studies on II/VI semiconductor quantum dots,” Curr. Opin. Solid State Mater. 6, 347–353 (2002). [7] D. Wang, A. L. Rogach, and F. Caruso, “Semicondutor quantum dot-labeled microsphere bioconjugates prepared by stepwise self-assembly,” Nano Lett. 2(8), 857–861 (2002). [8] M. Illing, G. Bacher, T. Kummell, A. Forchel, D. Hommel, B. Jobst, and G. Landwehr, “Fabrication of CdZnSe/ZnSe quantum dots and quantum wires by electron beam lithography and wet chemical etching,” J. Vac. Sci. Technol. B 13(6), 2792–2796 (1995). [9] C. Livermore, C. H. Crouch, T. Kummell, A. Forchel, D. Hommel, B. Jobst, and G. Landwehr, “Fabrication of CdZnSe/ZnSe quantum dots and quantum wires by electron beam lithography and wet chemical etching,” Science 274(5291), 1332–1335 (1995). [10] C. Y. Shen, K. Li, Q. I. Hou, H. J. Feng, and X. Y. Dong, “White LED based on YAG: Ce,Gd phosphor and CdSe-ZnS core/shell quantum dots,” IEEE Photonic Tech. L. 22(12), 884–886 (2010). [11] S. Cingarapu, Z. Yang, C. M. Sorensen, and K. J. Klabunde, “Synthesis of CdSe/ZnS and CdTe/ZnS quantum dots: refined digestive ripening,” Journal of Nanomateroals, 2012, 312087 (2012). [12] C. Lee, S. Y. Bae, S. Mobasser, and H. Manohara, “A novel silicon nanotips antireflection surface for the micro Sun sensor,” Nano Lett. 5(12), 2438–2442 (2005). [13] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, and J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Lett. 8(5), 1501–1505 (2008). [14] D. J. Aiken, “High performance anti-reflection coatings for broadband multi-junction solar cells,” Sol. Energy Mater. Sol. Cells 64(4), 393–404 (2000). [15] W. H. Southwell, “Gradient-index antireflection coatings,” Opt. Lett. 8(11), 584–586 (1983). [16] D. Bouhafs, A. Moussi, A. Chikouche, and J. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Sol. Energy Mater. Sol. Cells 52, 79–93 (1998). [17] J. H. Zhao, A. H. Wang, P. P. Altermatt, S. R. Wenham, M. A. Green, “24% efficient PERL silicon solar cell: Recent improvements in high efficiency silicon cell research,” Sol. Energy Mater. Sol. Cells 41, 87–99 (1996). [18] J. A. Dobrowolski, D. Poitras, P. Ma, H. Vakil, and M. Acree, “Toward perfect antireflection coatings: numerical investigation,” Appl. Opt. 41(16), 3075–3083 (2002). [19] Y. A. Chang, Z. Y. Li, H. C. Kuo, T. C. Lu, S. F. Yang, L. W. Lai, L. H. Lai, S. C. Wang, “Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process,” Semicond. Sci. Technol. 8(24), 085007-085010 (2009). [20] K. Q. Peng, X. Wang, X. L. Wu, and S. T. Lee, “Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion,” Nano Lett. 9(11), 3704–3709 (2009). [21] T. Stelzner, M. Pietsch, G. Andrä, F. Falk, E. Ose, and S. Christiansen, “Silicon nanowire-based solar cells,” Nanotechnology 19(29), 295203 (2008). [22] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” Opt. Express 18(S3), A286–A292 (2010). [23] P. C. Tseng, P. C. Yu, H. C. Chen, Y. L. Tsai, H. W. Han, M. A. Tsai, C. H. Chang, H. C. Kuo, “Angle-resolved characteristics of silicon photovoltaics with passivated conical-frustum nanostructures,” Sol. Energy Mater. Sol. Cells 95, 2610–2615 (2011). [24] C. M. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, “Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching,” Appl. Phys. Lett. 93(13), 133109–133111 (2008). [25] J. Li, H. Y. Yu, S. M. Wong, G. Zhang, X. Sun, P. G. Q. Lo, and D. L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102–033104 (2009). [26] Y. Kanamori, K. Hane, H. Sai, and H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78(2), 142–143 (2001). [27] Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007). [28] C. Chang, P. Yu, and C. Yang, “Broadband and omnidirectional antireflection from conductive indium-tin-oxide nanocolumns prepared by glancing-angle deposition with nitrogen,” Appl. Phys. Lett. 94(5), 051114–051117 (2009). [29] G. R. Lin, Y. C. Chang, E. S. Liu, H. C. Kuo, and H. S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett. 90(18), 181923–181925 (2007) . [30] M. A. Tsai, P. C. Tseng, H. C. Chen, H. C. Kuo, and P. Yu, “Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays,” Opt. Express 19(S1), A28–A34 (2011). [31] S. F. Rowlands, J. Livingstone, and C. P. Lund, “Optical modelling of thin film solar cells with textured interfaces using the effective medium approximation,” Sol. Energy 76 (1-3), 301–307 (2003). [32] M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,ˮ Bioscience, 29, 520-525 (1979). [33] H. C. Chen, C. C. Lin, Hao-Wei Han, Yu-Lin Tsai, Chia-Hua Chang, Hsun-Wen Wang, Min-An Tsai, Hao-Chung Kuo, and Peichen Yu, “Enhanced efficiency for c-Si solar cell with nanopillar array via quantum dots layers,ˮ Opt. Express, 19 (S5), A1141–A1147 (2011). [34] C. C. Lin, H. C. Chen, Y. L. Tsai, H. V. Han, H. S. Shih, Y. A. Chang, H. C. Kuo, P. C. Yu, “Highly efficient CdS-quantum-dot-sensitized GaAs solar cells,” Opt. Express 20(S2), A319–A326 (2012). [35] H. C. Chen, C. C. Lin, H. V. Han, K. J. Chen, Y. L. Tsai, Y. A. Chang, M. H. Shih, H. C. Kuo, and P. C. Yu, “Enhancement of power conversion efficiency in GaAs solar cells with dual-layer quantum dots using flexible PDMS film,” Sol. Energy Mater. Sol. Cells 104, 92–96 (2012). [36] M. A. Green, “Thin-film solar cells: review of materials, technologies and commercial status,ˮ J. Mater. Sci.: Mater. Electron. 18, S15–S19 (2007). [37] S. Siebentritt, “Wide gap chalcopyrites: material properties and solar cells,ˮ Thin Solid Films, 403-404, 1–8 (2002). [38] R. Klenk, J. Klaer, R. Scheer, M. C. Lux-Steiner, I. Luck, N. Meyer, and U. Ruhle, “Solar cells based on CuInS2—an overview,ˮ Thin Solid Films 480-481, 509–514, (2005). [39] A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum dot solar cells tuning photoresponse through size and shape control of CdSe−TiO2 architecture,ˮ J. Am. Chem. Soc. 130(12), 4007–4015 (2008). [40] S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,ˮ J. Am. Chem. Soc. 131(24), 8407–8409 (2009). [41] Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Polydisperse aggregates of ZnO nanocrystallites: A method for energy-conversion-efficiency enhancement in dye-sensitized solar cells,ˮ Adv. Funct. Mater. 18(11), 1654–1660 (2008). [42] K. Tanabe, “A review of ultrahigh efficiency III-V semiconductor compound solar cells: Multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,ˮ Energies 2(3), 504–530 (2009). [43] C. Baur, A. Bett, F. Dimroth, G. Siefer, M. Meusel, W. Bensch, W. Kostler, and G. Strobl, “Triple-Junction III–V based concentrator solar cells: perspectives and challenges,ˮ Journal of solar energy engineering 129, 258–265 (2007). [44] T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells,ˮ Appl. Phys. Lett. 70(3), 381–383 (1997). [45] S. Sze and K. Ng, Physics of semiconductor devices: Wiley-Blackwell (2007). [46] D. Neamen, Semiconductor physics and devices: McGraw-Hill, Inc. New York, NY, USA (2002). [47] 莊家琛,“太陽能工程-太陽能電池篇,”全華出版社 (2005) [48] M. P. Thekackra, “The solar cell constant and solar spectrum measurement from a research aircraft,” NASA Technical Report, (1970) [49] D. A. Neamen, “Semiconductor physics and devices,” (2003) [50] M. A. Tsai, P. C. Yu, C. H. Chiu, H. C. Kuo, T. C. Lu, and S. H. Lin, “Self-Assembled two-dimensional surface structures for beam shaping of GaN-based vertical-injection light-emitting diodes,” IEEE Photon. Technol. Lett. 22(1), 12–14 (2010). [51] X. H. Li, R. B. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-Nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011). [52] Y. K. Ee, P. Kumnorkaew, H. Tong, R. A. Arif, J. F. Gilchrist, and N. Tansu, “Enhancement of light extraction efficiency of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting Xiii 7231 (2009). [53] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. P. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009). [54] Y. K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107–221109 (2007). [55] Y. Zhao, Y. Zhang, H. Zhu, G. C. Hadjipanayis, and J. Q. Xiao, “Low-temperature synthesis of hexagonal (Wurtzite) ZnS nanocrystals,” J. Am. Chem. Soc. 126(22), 6874–6875 (2004). [56] C. Y. Huang, D. Y. Wang, C. H. Wang, Y. T. Chen, Y. T. Wang, Y. T. Jiang, Y. J. Yang, C. C. Chen, and Y. F. Chen, “Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips Solar Cells,” ACS Nano 4(10), 5849–5854 (2010). [57] W. Guter, J. Schone, S. P. Philipps, M. Steiner, and G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, “Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight,ˮ Appl. Phys. Lett. 94, 223504–223506 (2009). [58] P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,ˮ Adv. Mater. 21, 1618–1621 (2009). [59] M. M. Caldwell, “Plant life and ultraviolet radiation: some perspective in the history of the earth's UV climate,ˮ Bioscience 29(9), 520–525 (1979). [60] Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,ˮ Nat. Photonics 1, 717–722 (2007). [61] T. Trupke, M. A. Green, and P. Würfel, “Improving solar cell efficiencies by down-conversion of high-energy photons,ˮ J. Appl. Phys. 92, 1668–1674 (2002). [62] E. Klampaftis, D. Ross, K. R. McIntosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: A review,ˮ Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009). [63] E. Klampaftis, and B. S. Richards, “Improvement in multi-crystalline silicon solar cell efficiency via addition of luminescent material to EVA encapsulation layer,ˮ Prog. Photovoltaics Res. Appl. 19(3), 345–351 (2011). [64] C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrcek, C. d. Cañizo, and I. Tobias, “Modifying the solar spectrum to enhance silicon solar cell efficiency—An overview of available materials,ˮ Sol. Energy Mater. Sol. Cells, 91(4) 238–249 (2007). [65] X. Pi, Q. Li, D. Li, and D. Yang, “Spin-coating silicon-quantum-dot ink to improve solar cell efficiency, ˮ Sol. Energy Mater. Sol. Cells 95(10), 2941–2945 (2011). [66] E. Mutlugun, I. M. Soganci, and H. V. Demir, “Nanocrystal hybridized scintillators for enhanced detection and imaging on Si platforms in UV,ˮ Opt. Express 15(3), 1128–1134 (2007). [67] S. M. Sze, Physics of Semiconductor Devices (Wiley, 2nd Edition, 1981), Chap. 14. [68] C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot solids,ˮ Phys. Rev. B: Condens. Matter Mater. Phys. 62(4), 2669–2680 (2000). [69] H. C. Kuo, C. W. Hung, H. C. Chen, K. J. Chen, C. H. Wang, C. W. Sher, C. C. Yeh, C. C. Lin, C. H. Chen, Y. J. Cheng, “Patterned structure of REMOTE PHOSPHOR for phosphor-converted white LEDs,” Opt. Express 19(S4), A930–A936 (2011). [70] S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nature Mater. 5, 810–816 (2006). [71] W. Walukiewicz, J. W. Ager, K. M. Yu, Z. Liliental-Weber, J. Wu, S. X. Li, R. E. Jones, and J. D. Denlinger, “Structure and electronic properties of InN and In-rich group III-nitride alloys,” J. Phys. D: Appl. Phys. 39(5), 83–99 (2006). [72] D. Cherns, S. Henley, and F. Ponce, “Edge and screw dislocations as nonradiative centers in InGaN/GaN quantum well luminescence,” Appl. Phys. Lett. 78, 2691–2693 (2001). [73] E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, “High internal and external quantum efficiency InGaN/GaN solar cells,” Appl. Phys. Lett. 98, 021102–021104 (2011).
|