|
[1] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) Junctions,” Appl. Phys. Lett. 1, 82 (1962). [2] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992). [3] C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774 (2010). [4] M. W. Kim and P. C. Ku, “Lasing in metal-clad microring resonator,” Appl. Phys. Lett. 98, 131107 (2011). [5] M. T. Hill, Y. S. Oei, B. Smallbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. N?尒zel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589 (2007). [6] K. Yu, A. Lakhani, and M.C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790 (2010) [7] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics, 4, 395 (2010). [8] Y. G. Wang, C. C. Chen, C. H. Chiu, M. Y. Kuo, M. H. Shih, and H. C. Kuo, “ Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett. 98, 131110 (2011). [9] Y. G. Wang, S. W. Chang, C. C. Chen, C. H. Chiu, M. Y. Kuo, M. H. Shih, and H. C. Kuo, “Room temperature lasing with high group index in metal-coated GaN nanoring, ” Appl. Phys. Lett. 99, 251111 (2011). [10] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797 (1995). [11] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007). [12] C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett. 97, 181101 (2010). [13] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69, 4056 (1996) [14] J. T. Chu, T. C. Lu, H. H. Yao, C. C. Kao, W. D. Liang, J. Y. Tsai, H. C. Kuo, and S. C. Wang, “Room-temperature operation of optically pumped blue-violet GaN-based vertical-cavity surface-emitting lasers fabricated by laser lift-off,” Jpn. J. Appl. Phys. 45, 2556 (2006). [15] C. C. Kao, T. C. Lu, H. W. Huang, J. T. Chu, Y. C. Peng, H. H. Yao, J. Y. Tsai, T. T. Kao, H. C. Kuo, S. C. Wang, and C. F. Lin, “The lasing characteristics of GaN-based vertical-cavity surface-emitting laser with AlN/GaN and Ta2O5/SiO2 distributed bragg reflectors,” IEEE Photonics Tech. Lett. 18, 877 (2006). [16] P. C. Peng , H. C. Kuo , W. K. Tsai , Y. H. Chang , C. T. Lin , S. Chi , S. C. Wang, G. Lin, H. P. Yang,K. F. Lin, H. C. Yu, and J. Y. Chi, “Dynamic characteristics of long-wavelength quantum dot vertical-cavity surface-emitting lasers with light injection,” Opt. Express 14, 2944 (2006). [17] T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008). [18] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329 (1979). [19] F. Koyama, S. Kinoshita, K. Iga, “Room temperature CW operation of GaAs vertical cavity surface emitting laser,” IEICE Trans. E71-E, 1089 (1988). [20] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003). [21] X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens Bioelectron. 23, 151 (2007). [22] W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnology 3, 733 (2008). [23] H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007). [24] Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90, 033113 (2007). [25] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530 (1968). [26] A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261 (2008). [27] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608 (2000). [28] Maier and A. Stefan, “Plasmonics: fundamentals and applications,” Springer (2007). [29] Edward D. Palik, “Handbook of Optical Constants of Solids,” Academic Press (1997). [30] T. Peng and J. Piprek, “Refractive index of AlGaInN alloys,” Electron. Lett. 32, 2285 (1996). [31] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395 (2010). [32] A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77, 195130 (2008). [33] W. M. Rohsenow and H. Y. Choi, “Heat mass and momentum transfer,” Prentice-Hall (1961). [34] C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010). [35] M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers,” J. Opt. Soc. Am. B 27, B36 (2010). [36] J. C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “ Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352(2007).
|