跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 15:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許萬海
研究生(外文):Hsu, Wan-Hai
論文名稱:室溫下金屬塗層氮化鎵之光柵結構之雷射特性
論文名稱(外文):Room temperature lasing characteristics in the metal-coated GaN grating structures
指導教授:郭浩中郭浩中引用關係施閔雄
指導教授(外文):Kuo, Hao-ChungShih, Min-Hsiung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:69
中文關鍵詞:氮化鎵金屬塗層光柵
外文關鍵詞:GaNmetal-coatedgrating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:174
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們於室溫下金屬塗層氮化鎵之光柵結構中觀測到雷射訊號的表現,並展現金屬塗層在光柵結構中的重要性。
第一個主題部分,我們先利用有限元法近似解的模擬工具對光柵結構進行設計與優化,之後使用電子束微影技術在未參雜的氮化鎵材料上定義出光柵結構圖形,接著將氮化矽介電質材料與鋁金屬塗佈在此結構表層。在元件製作完成後,我們用掃描式電子顯微鏡去確認光柵結構元件的週期、寬度與深度是否與我們模擬所設計的結構尺寸相同。此後,由微光激發螢光量測系統對樣品進行量測,從實驗結果中我們觀察到了一波長約三百六十八奈米的單一模態能帶邊緣型雷射訊號,並概算出品質因數約為570。隨後,藉由有限元法近似解去模擬有無金屬塗層的氮化鎵光柵結構,我們證明了鋁金屬塗層確實大幅度提升了光柵結構對於光場的侷限能力。由實驗與模擬結果,我們相信此能帶邊緣型雷射模態是由於表面電漿的模態與部分的波導模態和所達成的。
第二個主題部分,我們選擇性改變光柵結構的等效折射率,更進一步設計出具有低閥值優點的缺陷模態雷射。我們改變光柵結構的其中一條狀結構寬度,並從有限元法近似解確認了缺陷模態的存在。從實驗結果中我們也觀察到了一波長約三百六十四奈米的缺陷型模態雷射訊號。和前一章之光柵結構之元件特性相比,缺陷模態光柵結構具有超低閥值能量密度的表現,並承諾了未來低耗能光電元件發展的可行性。
In this thesis, we observe the lasing action of metal-coated GaN grating structures at room temperature and show the importance of metal which is coated on the surface of grating structure. In the first part of this thesis, we use finite element method to design and optimize the grating structure. Then, we define the grating pattern on the undoped GaN by e-beam lithography. After that, we deposit the Si3N4 dielectric layer and coat the aluminum on it. Next, we use scanning electron microscope to check the period, width and height of grating structure. We observe a band edge lasing mode from the metal-coated GaN grating structure at 368nm by micro-photoluminescence system and estimate the quality factor of it which is about 570. We simulate the electric field of grating structure with and without metal and confirm that the metal-coated layer actually enhances the optical confinement of grating structure. From the experiment and simulation results, we believe that the band edge lasing mode is due to the surface plasmon polaritons and part of dielectric mode.
In the second part of this thesis, we selectively change the effective refractive index of grating structure and further design the defect mode laser with ultra-low threshold. We change one stripe’s width of grating structure and confirm that the defect mode actually exists in it by finite element method. The defect modes lasing at 364nm is observed under room temperature condition. Compared to grating structure, the defect grating structure has ultra-low threshold power density which gives a promise to develop the photoelectric device with low energy consumption in the future.
Chapter 1 Introduction 1
1.1 History of Semiconductor Laser 1
1.2 The Development of Metal-coated Nano Devices 2
1.3 Application of GaN-based Optoelectronic Devices 4
1.4 Surface Plasmon Effect 6
1.5 Motivation 8
1.6 Reference 15
Chapter 2 Experimental Instruments and Methods 19
2.1 Electron Beam Lithography and Scanning Electron Microscope 19
2.2 Dry Etching Process and E-gun Evaporation 20
2.3 Micro-Photoluminescence System 22
2.4 Fabrication Process 22
2.5 Reference 31
Chapter 3 Band Edge Mode Lasing in Metal-coated GaN Grating Structure at Room Temperature 32
3.1 Design and Optimize the Device 32
3.2 Lasing Characteristics of Band Edge Mode in Metal-coated GaN Grating Structure 35
3.3 Results and Discussion 37
3.4 Summary 40
3.5 Reference 52
Chapter 4 Defect Mode Lasing at the Defect of Metal-coated GaN Grating Structure at Room Temperature 53
4.1 Introduction 53
4.2 Design the Device 54
4.3 Lasing Characteristics of Defect Mode in Metal-coated GaN Grating Structure 55
4.4 Results and Discussion 56
4.5 Summary 58
4.6 Reference 66
Chapter 5 Conclusion 67
5.1 Conclusion 67
5.2 Future Work 68
[1] N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) Junctions,” Appl. Phys. Lett. 1, 82 (1962).
[2] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60, 289 (1992).
[3] C. Z. Ning, “Semiconductor nanolasers,” Phys. Status Solidi B 247, 774 (2010).
[4] M. W. Kim and P. C. Ku, “Lasing in metal-clad microring resonator,” Appl. Phys. Lett. 98, 131107 (2011).
[5] M. T. Hill, Y. S. Oei, B. Smallbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. N?尒zel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1, 589 (2007).
[6] K. Yu, A. Lakhani, and M.C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790 (2010)
[7] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics, 4, 395 (2010).
[8] Y. G. Wang, C. C. Chen, C. H. Chiu, M. Y. Kuo, M. H. Shih, and H. C. Kuo, “ Lasing in metal-coated GaN nanostripe at room temperature,” Appl. Phys. Lett. 98, 131110 (2011).
[9] Y. G. Wang, S. W. Chang, C. C. Chen, C. H. Chiu, M. Y. Kuo, M. H. Shih, and H. C. Kuo, “Room temperature lasing with high group index in metal-coated GaN nanoring, ” Appl. Phys. Lett. 99, 251111 (2011).
[10] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-brightness InGaN blue, green, and yellow light-emitting diodes with quantum well structures,” Jpn. J. Appl. Phys. 34, L797 (1995).
[11] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett. 91, 183507 (2007).
[12] C. H. Wang, S. P. Chang, W. T. Chang, J. C. Li, Y. S. Lu, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, “Efficiency droop alleviation in InGaN/GaN light-emitting diodes by graded-thickness multiple quantum wells,” Appl. Phys. Lett. 97, 181101 (2010).
[13] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett. 69, 4056 (1996)
[14] J. T. Chu, T. C. Lu, H. H. Yao, C. C. Kao, W. D. Liang, J. Y. Tsai, H. C. Kuo, and S. C. Wang, “Room-temperature operation of optically pumped blue-violet GaN-based vertical-cavity surface-emitting lasers fabricated by laser lift-off,” Jpn. J. Appl. Phys. 45, 2556 (2006).
[15] C. C. Kao, T. C. Lu, H. W. Huang, J. T. Chu, Y. C. Peng, H. H. Yao, J. Y. Tsai, T. T. Kao, H. C. Kuo, S. C. Wang, and C. F. Lin, “The lasing characteristics of GaN-based vertical-cavity surface-emitting laser with AlN/GaN and Ta2O5/SiO2 distributed bragg reflectors,” IEEE Photonics Tech. Lett. 18, 877 (2006).
[16] P. C. Peng , H. C. Kuo , W. K. Tsai , Y. H. Chang , C. T. Lin , S. Chi , S. C. Wang, G. Lin, H. P. Yang,K. F. Lin, H. C. Yu, and J. Y. Chi, “Dynamic characteristics of long-wavelength quantum dot vertical-cavity surface-emitting lasers with light injection,” Opt. Express 14, 2944 (2006).
[17] T. C. Lu, C. C. Kao, H. C. Kuo, G. S. Huang, and S. C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[18] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329 (1979).
[19] F. Koyama, S. Kinoshita, K. Iga, “Room temperature CW operation of GaAs vertical cavity surface emitting laser,” IEICE Trans. E71-E, 1089 (1988).
[20] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[21] X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens Bioelectron. 23, 151 (2007).
[22] W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnology 3, 733 (2008).
[23] H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430 (2007).
[24] Y. Gong and J. Vučković, “Design of plasmon cavities for solid-state cavity quantum electrodynamics applications,” Appl. Phys. Lett. 90, 033113 (2007).
[25] R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21, 1530 (1968).
[26] A. Mizrahi, V. Lomakin, B. A. Slutsky, M. P. Nezhad, L. Feng, and Y. Fainman, “Low threshold gain metal coated laser nanoresonators,” Opt. Lett. 33, 1261 (2008).
[27] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407, 608 (2000).
[28] Maier and A. Stefan, “Plasmonics: fundamentals and applications,” Springer (2007).
[29] Edward D. Palik, “Handbook of Optical Constants of Solids,” Academic Press (1997).
[30] T. Peng and J. Piprek, “Refractive index of AlGaInN alloys,” Electron. Lett. 32, 2285 (1996).
[31] M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4, 395 (2010).
[32] A. Kocabas, S. S. Senlik, and A. Aydinli, “Plasmonic band gap cavities on biharmonic gratings,” Phys. Rev. B 77, 195130 (2008).
[33] W. M. Rohsenow and H. Y. Choi, “Heat mass and momentum transfer,” Prentice-Hall (1961).
[34] C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010).
[35] M. T. Hill, “Status and prospects for metallic and plasmonic nano-lasers,” J. Opt. Soc. Am. B 27, B36 (2010).
[36] J. C. Weeber, A. Bouhelier, G. Colas des Francs, L. Markey, and A. Dereux, “ Submicrometer in-plane integrated surface plasmon cavities,” Nano Lett. 7, 1352(2007).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top