跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 04:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭晉嘉
研究生(外文):Kuo, Chin-Chia
論文名稱:雷射濺鍍法成長單晶非極性氧化鋅薄膜在藍寶石基板之光學與晶體結構相關特性研究
論文名稱(外文):The correlation between optical and structural properties of nonpolar ZnO epitaxial films on sapphires grown by pulsed laser deposition
指導教授:謝文峰謝文峰引用關係
指導教授(外文):Hsieh, Wen-Feng
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:152
中文關鍵詞:非極性氧化鋅光學磊晶
外文關鍵詞:nonpolarZnOepilayeroptical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:386
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
我們利用準分子雷射濺鍍的方法分別成長非極性的氧化鋅 與 的磊晶薄膜在 與 的藍寶石基板上,而這些磊晶面的關係分別如下所示: 與 。 非極性 氧化鋅的磊晶薄膜成長在 面的藍寶石基板上,會受到非等向性的應力作用造成晶格扭曲進而改變晶體的對稱性:由本來纖鋅礦C6V的對稱性變成一個斜方晶系C2V的對稱性。 從X光繞射分析可得知此非極性 氧化鋅的c軸是受到一個壓縮的應力,而另兩個方向都是拉伸的應力(y軸延表面方向,x軸是與c軸方向垂直且在in-plane上)。 當x與y軸的應力大小差距超過了0.6%,這樣非等向性應力大小足夠讓晶體結構從原本的纖鋅礦C6V的對稱性變成一個斜方晶系C2V的對稱性。利用不同偏極化的拉曼光譜、光學反射與螢光光譜,我們都可以觀察到晶體對稱性由纖鋅礦C6V改變到斜方晶系C2V的結果。 拉曼光譜上特定的振動模態並不滿足C6V的特性卻恰恰符合C2V對稱性下的振動模態;而光學反射與螢光光譜發現特別的躍遷能階E1與 E2,這個有別於纖鋅礦氧化鋅的躍遷是由於晶體結構因為非等向性應力作用而變形成斜方晶系C2V所造成的。
而成長在 藍寶石基板的 氧化鋅利用了額外的晶相 ,來降低應力對其磊晶薄膜造成的影響。 這些雜相 的a軸與主結構 氧化鋅的a軸是完全重疊在一起,像兩個原本 氧化鋅的晶體對應其 a軸往兩側各自旋轉約59°並沿著 氧化鋅的c軸排列;因此我們可以得這些不同晶相之間的磊晶面關係: 。 此外我們也發現這些雜相的多寡與螢光光譜上的寬頻譜有關,這個躍遷能量大約在3.17電子伏特。 這個躍遷是由於不同晶相間的界面雜質或者是缺陷束縛激子所造成的,我們把它稱作是表面束縛激子。 當雜相的數量增加的同時也增加的界面的數量,進而產生出更多的表面束縛激子在這些邊界上。
為了解決雜相帶來的表面束縛激子發光,我們利用兩階段成長的方式來消除這些雜相的產生。當低溫成長緩衝層厚度在47到67奈米之間,這些緩衝層能夠分攤足夠的應力而讓再成長於高溫下的氧化鋅會是單純的 晶面,但是如果低溫緩衝層的厚度超過或者是不足都會有雜相的產生。 利用兩階段成長所長出來的 氧化鋅只要在低溫時沒有觀察到雜相的出現都能有很好的表面平整度,我們也發現雜相的數量增加會增加薄膜的表面粗糙度,所以表面粗糙度也可以用來初步判斷是否有雜相的形成。 低溫光學頻譜下我們發現了除了一般氧化鋅的發光特性外還有一個很強的基面堆疊缺陷發光,這是由於在兩階段成長的 氧化鋅有較多的基面堆疊缺陷,而大量的基面堆疊缺陷分散了應力造成的影響並降低氧化鋅的應力作用。 所以兩階段成長確實能消除表面束縛激子發光與雜相的形成,並且能有效的降低應力對磊晶薄膜的影響也有較好的表面平整度。 我們也製作了非極性的量子結構,並證實不會有量子史塔克效應產生,光學特性主要都是受量子效應影響;這樣的結構也證實是比極性結構更適合應用在光學元件上。

The nonpolar - and -oriented ZnO films have been epitaxially grown by pulsed laser deposition (PLD) on the sapphire and substrates. The epitaxial relationship of nonpolar a- and m-plane ZnO on r- and m-sapphires are and , respectively.
Crystal symmetry breaking of wurtzite C6V to orthorhombic C2V due to in-plane anisotropic strain was investigated for nonpolar ZnO epi-films grown on the r-sapphire. X-ray diffraction (XRD) results reveal the epi-layer is subjected to a compressive strain along the polar c-axis and tensile strain along both y- surface normal and in-plane x- axis. The strain difference between y- and x-axes is larger than 0.6% that introduces enough anisotropic strain to break the crystal symmetry from wurtzite C6V to orthorhombic C2V. The polarized Raman spectra of modes reveal violation of the C6V selection rules; oppositely, the C2V configuration satisfies the selection rules for the Raman modes. The observed E1 and E2 bands in polarized optical reflection and photoluminescence (PL) spectra, which are different from the typical ZnO for wurtzite structure, confirm the anisotropic strain causes the structure change to the orthorhombic one.
In the m-plane ZnO films grown on m-sapphire, small amount of domains were found providing strain relaxation of the m-ZnO matrix. And the a-axes of both the domains and the m-ZnO matrix are aligned with the c-axis of the m-Al2O3 substrate. The c-axis of the domains rotates about □59° against the common a-axis of the m-ZnO. From this result, we found the epitaxial relationship of . Through carefully correlating low-temperature polarized PL spectra with the XRD peak intensity ratio of of the samples grown at different temperature and after thermal treatment, we found that the broad-band emission around 3.17 eV may result from the interface defects trapped excitons at the boundaries between the domains and the m-ZnO matrix. The more domains in the m-ZnO layer cause the more surface boundary that makes the stronger surface-bound-exciton emission.
To eliminate the extra domain, we used the low-temperature (LT) grown buffer of m-ZnO to investigate the optical and crystalline properties. Examined by XRD, we found when the thickness of LT-buffer layer is below 67 nm it contain no any extra domains, however, there exist a lot of extra domains for the thickness above 156 nm. The amount of extra domains increases with decreasing the buffer thickness. The optimal thickness of LT-buffer is from 47 to 67 nm, in which no observable extra -domains present in the two-step m-ZnO epilayers. The AFM measurement also shows the lower surface roughness for the two-step growth m-ZnO than those without buffers grown at the same temperature. This characteristics benefit for fabricating quantum-well (QW) structures. The LT-PL spectra show the three emission peaks around 3.364, 3.328 and 3.263 eV, which are attributed to the emissions of donor-bound excitons, basal plane stacking faults (BSFs) and free electron bound to acceptor emissions, respectively. The BSFs emission due to high BSFs density of ~2x106 cm-1 by TEM measurement, this value is larger than the m-ZnO without LT-buffer. The high BSFs density should provide the way to relax the lattice strain. In addition, the LT-PL spectra indicate absence of the broad-band emission at 3.17 eV result from the domain boundary trapping between the m-ZnO and extra domains which is dominant in the m-ZnO without LT-buffer.
Finally, 5 pairs of nonpolar m-plane ZnO/MgxZn1-xO quantum well structures were successfully grown on m-sapphire with LT m-ZnO LT-buffer. The results demonstrate these QW structures possess quantum confinement without experiencing the quantum confined Stark effect due to their nonpolar nature.

Abstract in Chinese..................................I
Abstract in English................................III
Acknowledgement.....................................VI
Table of Contents..................................VII
List of Figure Captions............................XII
List of Table......................................XIX

Chapter 1 Introduction............................................1
1.1 Basic properties of ZnO-- overview of c-plane ZnO related problems..........................................................1
1.1.1 Basic properties of ZnO....................................1
1.1.2 Overview of c-plane (polar) ZnO and its problems...........4
1.2 Motivation....................................................8
1.3 Motives and contributions....................................10
1.4 Organization of the thesis...................................11
Chapter 2 Theoretical background of experimental methods.........16
2.1 System and principle of laser-MBE............................16
2.1.1 Principle of laser-MBE....................................16
2.1.2 Description of laser-MBE system...........................18
2.2 Epitaxy......................................................19
2.2.1 Lattice mismatch epitaxy (LME)............................19
2.2.2 Domain mismatch epitaxy (DME).............................20
2.3 X-ray diffraction............................................21
2.3.1 Theory of X-ray diffraction ..............................21
2.3.2 Radial scan...............................................24
2.3.3 Rocking curve.............................................24
2.3.4 Azimuthal scan............................................25
2.4 Microscopy...................................................26
2.4.1 Transmission electron microscopy (TEM)....................26
2.4.1-1 Selected area electron diffraction (SAED).............27
2.4.1-2 Two beam analysis.....................................28
2.4.2 Atomic force microscopy (AFM).............................29
2.5 Fundamentals of optical characterizations....................31
2.5.1 Photoluminescence (PL) characterizations..................31
2.5.1-1 General concepts......................................32
2.5.1-2 Free excitons.........................................34
2.5.1-3 Bound excitons and Two-electron satellites............39
2.5.1-4 LO-phonon replicas....................................43
2.5.1-5 Defect emission.......................................44
2.5.2 Raman scattering measurement...........................,,,45
2.5.2-1 Crystal structures....................................45
2.5.2-2 Selection rules and phonon modes......................48
Chapter 3 Experimental procedures and characterization technique.55
3.1 Growth nonpolar ZnO epilayers................................55
3.1.1 Cleaning process of substrate and target arrangement......55
3.1.2 Operation arrangement of laser-MBE deposition...........56
3.2 Structural and lattice dynamics characterization of the ZnO films............................................................58
3.2.1 X-ray diffraction (XRD)...................................58
3.2.2 Transmission electron microscopy (TEM)....................58
3.2.3 Raman scattering spectra..................................59
3.3 Surface morphology of the ZnO films - Atomic force microscopy.......................................................60
3.4 Measurements of optical properties...........................60
3.4.1 Photoluminescence system..................................60
3.4.2 Optical reflection system.................................61
Chapter 4 Anisotropic biaxial strains causing crystal symmetry breaking in nonpolar a-ZnO on r-sapphire.........................63
4.1 Introduction.................................................63
4.2 Crystallographic orientation of a-ZnO on r-sapphire..........64
4.3 Anisotropic strain versus the growth temperature.............70
4.4 The influence of anisotropic strains on optical properties in a-ZnO .............................................................73
4.4.1 Polarized Raman measurement...............................73
4.4.2 Optical emission properties of a-ZnO......................78
4.5 Summary......................................................80
Chapter 5 Influence of extra domain on crystalline and optical properties in nonpolar m-ZnO films on m-sapphire.................84
5.1 Introduction.................................................84
5.2 The crystal properties of m-ZnO on m-plane sapphire..........85
5.3 The defect states in m-ZnO...................................91
5.4 Optical properties associated with domain interfaces in m-ZnO..............................................................94
5.5 Summary.....................................................100
Chapter 6 Eliminating extra domains in m-plane ZnO by two-step growth on m-sapphire...................................................104
6.1 Introduction................................................104
6.2 Structural properties of m-ZnO by two-step growth...........105
6.2.1 Low temperature (LT) growth m-ZnO buffer layers..........105
6.2.2 The m-ZnO epi-films on LT-buffer.........................116
6.2.3 Defect states in the two-step grown m-ZnO films..........122
6.3 Optical properties of two-step growth m-ZnO.................125
6.3.1 PL spectra...............................................125
6.3.2 Raman spectra............................................133
6.4 Non-polar quantum well structures on m-sapphire.............138
6.5 Summary.....................................................140
Chapter 7 Conclusion and Prospective............................146
7.1 Conclusion..................................................146
7.2 Prospective.................................................148

1. B. X Lin, Z. X. Fu, and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001).
2. Mollwo E 1982 Semiconductors: Physics of II–VI and I–VII Compounds, Semimagnetic Semiconductors (Landolt-B¨ornstein New Series) O Madelung, M Schulz and H Weiss (Berlin: Springer) vol 17 , p 35
3. Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. Tang, P. Yu and G. Wong, Phys. Status Solid b 202 609 (1997)
4. Y. Chen, D. M. Bahnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl Phys. Lett. 84, 7 (1998).
5. R. M. Ma, X. L. Wei, L. Dai, S. F. Liu, T. Chen, S. Yue, Z. Li,Q. Chen and G. G. Qin, Nano Lett., 9, 2697 (2009).
6. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He and H. J. Choi, Adv. Funct. Mater., 12, 312 (2002).
7. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 292, 1897 (2001).
8. S. F. Yu, Clement Yuen, and S. P. Lau, W. I. Park and Gyu-Chul Yi, Appl. Phys. Lett., 84, 3241 (2004).
9. H. C. Hsu, C. Y. Wu and W. F. Hsieh, J. Appl. Phys., 97, 064315 (2005).
10. X. Ma, P. Chen, D. Li, Y. Zhang, and D. Yang, Appl. Phys. Lett., 91, 251109 (2007).
11. Gregory J. Exarhos, and Shiv K. Sharma, Thin Solid Film 270, 27 (1995).
12. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater. 4 42 (2005)
13. J.-H. Lim, C.-K. Kang, K.-K. Kim, Il-K. Park, D.-K. Hwang and S.-J. Park, Adv. Mater. 18, 2720 (2006)
14. H. D. Sun, T Makino, N. T. Tuan, Y. Segawa, K. Z.Tang, G. K. L. Wong, M Kawasaki, A Ohtomo, K Tamura and H. Koinuma, Appl. Phys. Lett. 77 4250 (2000).
15. H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H, Koinuma, J. Appl. Phys. 91, 1993 (2002).
16. G. Coli and K. K. Bajaj, Appl. Phys. Lett. 78, 2861 (2001).
17. W. T. Hsu, K. F. Lin, and W. F. Hsieh, Appl. Phys. Lett. 91, 181913 (2007).
18. H. D. Sun,T. Makino, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura and H. Koinuma, Appl. Phys. Lett. 78, 2464 (2001)
19. J W Sun and B P Zhang, Nanotechnology 19, 485401 (2008)
20. P. B. Schwarz, K. Khachaturyan and E. R. Weber, Appl. Phys. Lett., 70, 1122 (1997).
21. L. G¨orgens, O. Ambacher, M Stutzmann, C Miskys, F Scholz and J. Off, Appl. Phys. Lett., 76, 577 (2000).
22. A Bykhovski, B Gelmont and M. Shur, J. Appl. Phys., 74 6734 (1993)
23. T Makino, Y Segawa, M Kawasaki and H Koinuma, Semicond. Sci. Technol., 20 78 (2005)
24. B. P. Zhang, B. L. Liu, J. Z. Yu, Q. M. Wang, C. Y. Liu, Y. C. Liu and Y. Segawa, Appl. Phys. Lett., 90, 132113 (2007)
25. T. Bretagnon, P. Lefebvre, T. Guillet, T. Taliercio, B. Gil and C. Morhain, Appl. Phys. Lett., 90, 201912 (2007)
26. T. Makino, A. Ohtomo, C.H. Chia, Y. Segawa, H. Koinuma and M. Kawasaki, Physica E, 21, 671 (2004)
27. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, Phys. Rev. B 72, 241305 (2005).
28. J A Davis, L V Dao, X Wen, C Ticknor, P Hannaford, V A Coleman,H H Tan, C Jagadish, KKoike, S Sasa, M Inoue and M Yano, Nanotechnology, 19 055205 (2008)
29. T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 93, 121907 (2008)
30. B Gil, P Lefebvre, T Bretagnon, T Guillet, J A Sans, T Taliercio and C Morhain, Phys. Rev. B 74, 153302 (2006)
31. S-H Park and D. Ahn, Appl. Phys. Lett. 87 253509 (2005).
32. J S Im, H Kollmer, J Off, A Sohmer, F Scholz and A Hangleiter, Phys. Rev. B 57 R9435 (1998)
33. J-M Chauveau, M La¨ugt, P Vennegu`es, M Teisseire, B Lo, C Deparis, C Morhain and B Vinter, Semicond. Sci. Technol. 23, 035005 (2008)
34. P Waltereit, O Brandt, A Trampert, H T Grahn, J Menniger, M Ramsteiner, M Reiche and K H Ploog, Nature 406, 865 (2000)
35. E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. W. Yang, G. Simin, M. Asif Khan, H. P. Maruska, D. W. Hill, M. C. Chou, J. J. Gallagher, B. Chai, Appl. Phys. Lett. 81, 4130, (2002).
36. K. Domen, K. Horino, A. Kuramata, T. Tanahashi, Appl. Phys. Lett. 71, 1996, (1997).
37. Yen-Teng Ho, Wei-Lin Wang, Chun-Yen Peng, Mei-Hui Liang, Jr-Sheng Tian, Chih-Wei Lin, and Li Chang, Appl. Phys. Lett. 93, 121911 (2008)
38. J-S Tian, M-H Liang, Y-T Ho, Y-A Liu, and L. Chang, Journal of Crystal Growth 310, 777 (2008)
39. S. Zhou, J. Zhou, T. Huang, S. Li, J. Zou, J. Wang, X. Zhang, X. Li, and R. Zhang, Journal of Crystal Growth 303, 510 (2007)
40. Mitch M.C. Chou, L. Chang, H-Y Chung, T-H Huang, J-J Wu, and C-W Chen, Journal of Crystal Growth 308, 412 (2007)
41. Mitch M.C. Chou, L. Chang, D-R Hang, C. Chen, D-S Chang, and C-A Li, Crystal Growth &; Design, 9,2073 (2009)
42. J. Zu’n˜iga-Pe’rez, V. Mun˜oz-Sanjose’, E. Palacios-Lido’n, J. Colchero, Appl. Phys. Lett. 88, 261912 (2006).
43. T. Moriyama, S. Fujita, Jpn. J. Appl. Phys. 42, 7919 (2005)
44. M.-S. Mu, A. Azuma, T. Shiosaki, A. Kawabata, J. Appl. Phys. 62, 2482 (1987)
45. M. Wraback, H. Shen, S. Liang, C.R. Gorla, Y. Lu, Appl. Phys. Lett. 74, 507 (1999).
46. J. Zu’n˜iga-Pe’rez, V. Mun˜oz-Sanjose’ , E. Palacios-Lido’n, J. Colchero, Phys. Rev. Lett. 95, 226105 (2005).
47. J.-M. Chauveau, P. Vennéguès, M. Laügt, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys. 104, 073535 (2008)

K. Rajiv, Singh and J. Narayan, Phys. Rev. B, 41, 8843 (1990).
2. K.Y. Cheng, Proc. IEEE, 11 (1997).
3. Chauveau et al. J. Appl. Phys. 104, 073535 (2008).
4. J. W. Mathews and A. E. Blakeslee, J. Cryst. Growth 27, 188 (1974).
5. J. W. Mathews, “Epitaxial Growth, Part B, Materials Science Series” (Academic, New York, 1975).
6. J. Narayan and S. Sharan, Mater. Sci. Eng. B 10, 261 (1991).
7. J. Narayan and B. C. Larson, J. Appl. Phys. 93, 278 (2003).
8. W.-R. Liu, Y.-H. Li, W. F. Hsieh, C.-H. Hsu, W. C. Lee, Y. J. Lee, M. Hong and J. Kwo, Cryst. Growth Des. 9, 239 (2009).
9. D. B. Wiliams and C. B. Carter, “Transmission Electron Microsdopy” (Plenum Press, New York, 1996).
10. C. O. Dunn, and E. F. Koch, Acta metall. 5, 548 (1957).
11. Carlo Lamberti , “Characterization of Semiconductor Heterostructures and Nanostructures”, Elsevier, 2008.
12. S. Srinivasan, L. Geng, R. Liu, F. A. Ponce, Y. Narukawa, and S. Tanaka, Appl. Phys. Lett. 83, 5187 (2003).
13. J.-M. Chauveau, P. Vennéguès, M. Laügt, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys. 104, 073535 (2008).
14. S. Perkowitz, Optical characterization of semiconductors: infrared, Raman, and Photoluminescence spectroscopy (Sidney Perlpwotz, USA, 1993).
15. C. F. Klingshirn, “Semiconductor Optics“ (Springer, Berlin, 1997).
16. M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, and E. Hanamura, “Excitonic Processes in Solids“ (Springer-Verlag, Berlin, 1984).
17. A. Mang, K. Reimann, and St. Rübenacke, Solid State Commun. 94, 251 (1995).
18. J. L. Birman, Phys. Rev. Lett. 2, 157 (1959).
19. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W. C. Harsch,Phys. Rev. B 60, 2340 (1999)
20. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B 65, 075207 (2002).
21. A. V. Rodina, M. Strassburg, M. Dvorzak, U. Haboeck, A. Hoffman, A. Zeuner, H. R. Alves, D. M. Hofmann, and B. K. Meyer, Phys. Rev. B 69, 125206 (2004).
22. K. Thonke, T. Gruber, N. Teofilov, R. Schönfelder, A. Waag, and R. Sauer, Physica B 308, 945 (2001).
23. C. Boemare, T. Monteiro, M. J. Soares, J. G. Guilherme, and E. Alves, Physica B 308, 985 (2001).
24. D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).
25. J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, J. Appl. Phys. 85, 7884 (1999).
26. A. Teke, Ü. Özgür, S. Do˘gan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
27. W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett. 20, 59 (1968).
28. S. F. Chichibu, T. Sota, G. Cantwell, D. B. Eason, and C.W. Litton, J. Appl. Phys. 93, 756 (2003).
29. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Strassburg, M. Dworzak, U. Haboeck, and A.V. Rodina, Phys. Stat. Sol. (b) 241, 231 (2004).
30. M. Schilling, R. Helbig, and G. Pensl, J. Lumin. 33, 201 (1985).
31. C. Gonzales, D. Block, R. T. Cox, and A. Hervé, J. Cryst. Growth 59, 357 (1982).
32. H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, and B. K. Meyer, Optical Materials 23, 33 (2003).
33. Y. P. Varshni, Physica 34, 149 (1967); L. Wang and N. C. Giles, J. Appl. Phys. 94, 973 (2003).
34. A. Janotti and Chris G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
35. B. Guo, Z. R. Qiu, and K. S.Wong, Appl. Phys. Lett. 82, 2290 (2003).
36. H.-J. Egelhaaf and D. Oelkrug, J. Cryst. Growth 161, 190 (1996).
37. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
38. S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 84, 2287 (1998).
39. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
40. R. Loudon, Adv. Phys. 50, 813 (2001).
41. M. A. Stroscio and M. Dutta, “Phonons in Nanostructures” (Cambridge
university press, United Kingdom 2001).
42. V. Heine, in: Group Theory in Quantum Mechanics (Per-gamon, New York, 1960).
43. J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, Appl. Phys. Lett. 88, 101905 (2006).
44. A. P. Jephcoat, R. J. Hemley, H. K. Mao, R. E. Cohen, and M. J. Mehl, Phys. Rev. B 37, 4727 (1988).

J.-M. Chauveau, P. Vennéguès, M. Laügt, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys. 104, 073535 (2008).
2. T. Koida, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki and M. Kawasaki, Appl. Phys. Lett. 84, 1079 (2004).
3. Y. S. Nam, S. W. Lee, K. S. Baek, S. K. Chang, J.-H. Song, J.-H. Song, S. K. Han, S.-K. Hong, and T. Yao Appl. Phys. Lett. 92, 201907 (2008).
4. S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Phys. Rev. B 65, 075202 (2002).
5. B. Gil and A. Alemu, Phys. Rev. B 56, 12446 (1997).
6. B. P. Zhang, Y. Segawa, K. Wakatsuki, Y. Kashiwaba and K. Haga. Appl. Phys. Lett., 79, 3953, (2001).
7. G. Saraf, Y. Lu,and T. Siegrist Appl. Phys. Lett. 93, 041903 (2008).
8. S. Zhou, J. Zhou, T. Huang, S. Li, J. Zou, J. Wang, X. Zhang, X. Li, and Rong Zhang, J. Cryst. Growth 303, 510 (2007).
9. S. Tripathy, S. J. Chua, P. Chen, and Z.L.Miao, J. Appl. Phys. 92, 3503 (2002).
10. G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, Appl. Phys. Lett. 87, 231903 (2005).
11. J. M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002).
12. E.W. Stephen, B. C. Norman, H.D. Lawrence, Introduction to Infrared and Raman Spectroscopy p.135 (Academic Press, New York, 1965).
13. J. M. Calleja and M. Cardona Phys. Rev. B 16, 3753 (1977).
14. F. Decremps, J. Pellicer-Porres, A.M. Saitta, J. -C. Chervin, and A.Polian, Phys. Rev. B 65, 092101 (2002)
15. M. N. Iliev, M. V. Abrashev, H.-G. Lee, V. N. Popov, Y. Y. Sun, C. Thomsen, R. L. Meng, and C. W. Chu, Phys. Rev. B 57, 2872 (1998).
16. M. Katsikini, J. Arvanitidis, D. Christofilos, S. Ves, G. P. Dimitrakopulos, G. Tsiakatouras, K. Tsagaraki, and A. Georgakilas, Phys. Status Solidi A 209, 1085 (2012).
17. Th. Gruber, G. M. Prinz, C. Kirchner, R. Kling, F. Reuss, W. Limmer, and A. Waag, J. Appl. Phys., 96, 289 (2004).
18. T. Makino, T. Yasuda, Y. Segawa, A. Ohtomo, K. Tamura, M. Kawasaki, and H. Koinuma, Appl. Phys. Lett., 79, 1283 (2001).
19. A. B. M. A. Ashrafi, N. T. Binh, B.-P. Zhang, and Y. Segawa, Appl. Phys. Lett., 84, 2814 (2004).
20. A.B.M.A. Ashrafi, B.-P. Zhang, N.T. Binh, K. Wakatsuki, and Y. Segawa, J. Cryst. Growth 275, 2439 (2005).
21. Y. S. Nam, S. W. Lee, K. S. Baek, S. K. Chang, J. H. Song, J. H. Song, S. K. Han, S. K. Hong, and Takafumi, Appl. Phys. Lett. 92, 201907 (2008).

G. Saraf, Y. Lu, and T. Siegrist, Appl. Phys. Lett. 93, 041903 (2008).
2. C. C. Kuo, W.-R. Liu, W. F. Hsieh, C.-H. Hsu, H. C. Hsu, and L. C. Chen, Appl. Phys. Lett. 95, 011905 (2009).
3. T. Koida, S. F. Chichibu, A. Uedono, T. Sota, A. Tsukazaki, and M. Kawasaki, Appl. Phys. Lett. 84, 1079 (2004).
4. J.-H. Kim, S. K. Han, S. I. Hong, S.-K. Hong, J. W. Lee, J. Y. Lee, J.-H. Song, J. S. Park and T. Yao, J. Vac. Sci. Technol. B 27, 1625, (2009).
5. J. W. Lee, J.-H. Kim, S. K. Han, S.-K. Hong , J. Y. Lee, S. I. Hong and T. Yao, J. Cryst. Growth 312, 238 (2010).
6. E. Cagin, J. Yang, W. Wang, J. D. Phillips, S. K. Hong, J. W. Lee, and J. Y. Lee, Appl. Phys. Lett. 92, 233505 (2008).
7. T. Moriyama and S. Fujita, Jpn. J. Appl. Phys., Part 1 44, 7919 (2005).
8. J. Zuniga-Perez, A. Rahm, C. Czekalla, J. Lenzner, M. Lorenz, and M. Grundmann, Nanotechnology 18, 195303 (2007).
9. M. Katsikini, J. Arvanitidis, D. Christofilos, S. Ves, G. P. Dimitrakopulos, G. Tsiakatouras, K. Tsagaraki, and A. Georgakilas, Phys. Status Solidi A 209, 1085 (2012).
10. J.-M. Chauveau, P. Vennéguès, M. Laügt, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys. 104, 073535 (2008).
11. W.-L. Wang, C.-Y. Peng, Y.-T. Ho, S.-C. Chuang, and Li Chang, J. Vac. Sci. Technol. A 29, 031001 (2011).
12. S. K. Han, J.-H Kim, S.-K. Hong, J.-H. Song, J.-H. Song, J. Wook Lee, J. Y. Lee, S. I. Hong, T. Yao, J. Cryst. Growth 312, 2196 (2010).
13. S. K. Han, S-K Hong, J. W. Lee, J. G. Kim, M. Jeong, J. Y. Lee, S. I. Hong, J. S. Park, Y. E. Ihm, J.-S. Ha and Takafumi Yao, Thin Solid Films 519 , 6394 (2011)
14. K-P Liu, K-Y Yen, P-Y Lin, J-R Gong, K-D Wu and W-L Chen, J. Vac. Sci. Technol. A 29,03A101-1, (2011).
15. C. Stampfl and Chris G. Van de Walle, Phys. Rev. B 57, R15052 (1998).
16. Y. Yan, G. M. Dalpian, M. M. Al-Jassim, and S.-H. Wei, Phys. Rev. B 70, 193206 (2004)
17. X. H. Wu, L. M. Brown, D. Kapolnek, S. Keller, B. Keller, S. P. Den-Baars, and J. S. Speck, J. Appl. Phys. 80, 3228 (1996).
18. C. Stampfl and Chris G. Van de Walle, Phys. Rev. B 57, 15052 (1998).
19. I. Tischer, M. Feneberg, M. Schirra, H. Yacoub, R. Sauer, K. Thonke, T. Wunderer and F. Scholz, Phys. Rev. B 83, 035314 (2011).
20. T. Onuma, S. F. Chichibu, A. Uedono, Y. Z. Yoo, T. Chikyow, T. Sota, M. Kawasaki and H. Koinuma, Appl. Phys. Lett. 85, 5586 (2004).
21. L. W. Sun, H. P. He, C. Liu, Y. F. Lu and Z. Ye. Cryst. Eng. Comm. 13, 2439 (2011).
22. W.-R. Liu, B. H. Lin, S. Yang, C. C. Kuo, Y.-H. Li, C.-H. Hsu, W. F. Hsieh, W. C. Lee, M. Hong, and J. Kwo, CrystEngComm 14, 1665 (2012).
23. M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, Phys. Rev. B 77, 125215 (2008).
24. J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, Appl. Phys. Lett. 96, 053105 (2010).

T. Moriyama and S. Fujita, Jpn. J. Appl. Phys., 44, 7919 (2005).
2. S. Nakamura, Jpn. J. Appl. Phys. 30, L1705 (1991).
3. S. Kim, J. Oh, J. Kang, D. Kim, J. Won, J. W. Kim and H.-K. Cho, J. Cryst. Growth 262, 7 (2004).
4. T. Hashimoto, M. Yuri, M. Ishida, Y. Terakoshi, O. Imafuji, T. Sugino, and K. Itoh, Jpn. J. Appl. Phys., 38, 6605 (1999).
5. X.H. Wu, P. Fini, E.J. Tarsa, B. Heying, S. Keller, U.K. Mishra, S.P. DenBaars, and J.S. Speck, J. Cryst. Growth, 189/190, 231 (1998).
6. H.J. Lee, S.W. Lee, H. Goto, H.-J. Lee, J.-S. Ha, K. Fujii, M.W. Cho, T. Yao, and S.K. Hong, J. Cryst. Growth, 310, 920 (2008).
7. C.F. Shih, M.Y. Keh, Y.N. Wang, N.C. Chen, C.-A. Chang, P.H. Chang, and K.S. Liu, J. Cryst. Growth, 277, 44 (2005).
8. J. Han, K.E. Waldrip, S.R. Lee, J.J. Figiel, S.J. Hearme, G.A. Petersen, and S.M. Myers, Appl. Phys. Lett. 78, 67 (2001).
9. C.Q. Chen, J.P. Zhang, M.E. Gaevski, H.M. Wang, W.H. Sun, R.S.Q. Fareed, J.W. Yang, amd M. Asif Khan, Appl. Phys. Lett. 81, 4961 (2002).
10. J.P. Zhang, H.M. Wang, M.E. Gaevski, C.Q. Chen, Q. Fareed, J.W. Yang, G. Simin, and M. Asif Khan, Appl. Phys. Lett. 19, 3542 (2002).
11. H. Takasu, P. Fons, K. Iwata, A. Yamada, K. Matsubara, R. Hunger, and S. Niki, J. Cryst. Growth, 227, 923 (2001).
12. H. Takasu, T. Tanabe, H. Takasu, P. Fons, K. Iwata, A. Yamada, K. Matsubara, R. Hunger, and S. Niki, Jpn. J. Appl. Phys., 40, 250 (2001).
13. H. J. Ko, Y. Chen, S. Hong, and T. Yao, J. Cryst. Growth, 209, 816 (2000).
14. S. Hong, H. J. Ko, Y. Chen, T. Hanada ,and T. Yao, J. Cryst. Growth, 214-215, 81 (2000).
15. J.-M. Chauveau, P. Vennéguès, M. Laügt, C. Deparis, J. Zuniga-Perez, and C. Morhain, J. Appl. Phys. 104, 073535 (2008).
16. C. C. Kuo, B. H. Lin, Song Yang, W. R. Liu, W. F. Hsieh, and C.-H. Hsu, Appl. Phys. Lett. 101, 011901 (2012).
17. Y. Chen, D. M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998).
18. Y. Chen, D. M. Bagnall, Z. Zhu, T. Swkiuchi, K. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, J. Cryst. Growth, 181, 165 (1997).
19. W. L. Wang, Y. T. Ho, K. A. Chiu, C. Y. Peng, and L. Chang, J. Cryst. Growth, 312, 1179 (2010).
20. S. Yang, B. H. Lin, C. C. Kuo, H. C. Hsu, W.-R. Liu, M. O. Eriksson, P.-O. Holtz, C.-S. Chang, C.-H. Hsu, and W. F. Hsieh, Cryst. Growth Des. 12, 4745 (2012)
21. A. Teke, Ü. Özgür, S. Do˘gan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. O. Everitt, Phys. Rev. B 70, 195207 (2004).
22. A. Janotti and Chris G. Van de Walle, Phys. Rev. B 76, 165202 (2007).
23. R. Liu, A. Bell, and F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, Appl. Phys. Lett. 86, 021908 (2005).
24. I. Tischer, M. Feneberg, M. Schirra, H. Yacoub, R. Sauer, K. Thonke, T. Wunderer, F. Scholz, L. Dieterle, E. M¨uller, and D. Gerthsen, PHYSICAL REVIEW B 83, 035314 (2011).
25. W. Rieger, R. Dimitrov, D. Brunner, E. Rohrer, O. Ambacher, and M. Stutzmann, PHYSICAL REVIEW B 54, 17596 (1996).
26. P. Corfdir, P. Lefebvre, J. Levrat, A. Dussaigne, J.-D. Ganière, D Martin, J. Ristic, T. Zhu, N. Grandjean, and B. Deveaud-Plédran, J. Appl. Phys. 105, 043102 (2009).
27. M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, PHYSICAL REVIEW B 77, 125215 (2008).
28. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett. 76, 3549 (2000).
29. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
30. C. Stampfl, C. G. Van de Walle, Phys. Rev. B, 57, R15052 (1998).
31. C. Stampfl and Chris G. Van de Walle, Phys. Rev. B 57, 15052 (1998).
32. Y. J. Sun, O. Brandt, U. Jahn, T. Y. Liu, A. Trampert, S. Cronenberg, S. Dhar, and K. H. Ploog, J. Appl. Phys., 92, 5714 (2002).
33. S. C. Ray, Y. Low, H. M. Tsai, C. W. Pao, J. W. Chiou, S. C. Yang, F. Z. Chien, W. F. Pong, M.-H. Tsai, K. F. Lin, H. M. Cheng, W. F. Hsieh, and J. F. Lee, Appl. Phys. Lett. 91, 262101 (2007).
34. W.-T. Hsu, K.-F. Lin, and W. F. Hsieh, Appl. Phys. Lett. 91, 181913 (2007).
35. T. Sander, S. Eisermann, B. K. Meyer, and P. J. Klar, PHYSICAL REVIEW B 85, 165208 (2012).
36. L. Bergman, X.-B. Chen, J. Huso, J. L. Morrison, and H. Hoeck, J. Appl. Phys. 98, 093507 (2005).
37. C. A. Arguello, D. L. Rousseau, and S. P. Porto, PHYSICAL REVIEW, 181, 1351 (1969).
38. K. Koike, K. Hama, I. Nakashima, G.-Y. Takada, K.-I. Ogata, S. Sasa, M. Inoue, and M. Yano, J. Cryst. Growth, 287, 288 (2005).
39. B. P. Zhang, B. L. Liu, J. Z. Yu, Q. M. Wang, C. Y. Liu, Y. C. Liu and Y. Segawa, Appl. Phys. Lett., 90, 132113 (2007)
40. T. Bretagnon, P. Lefebvre, T. Guillet, T. Taliercio, B. Gil and C. Morhain, Appl. Phys. Lett., 90, 201912 (2007)
41. T. Makino, A. Ohtomo, C.H. Chia, Y. Segawa, H. Koinuma and M. Kawasaki, Physica E, 21, 671 (2004)
42. C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, and C. Deparis, Phys. Rev. B 72, 241305 (2005).
43. T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Appl. Phys. Lett. 93, 121907 (2008)

U. Ozgu ̈ r, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).
2. S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Scha ̈fer, Y. G. Sadofyev, and F. Henneberger, Appl. Phys. Lett. 87, 091903 (2005).
3. T. V. Shubina, A. A. Toropov, O. G. Lublinskaya, P. S. Kop’ev, S. V. Iva- nov, A. El-Shaer, M. Al-Suleiman, A. Bakin, A. Waag, A. Voinilovich, E. V. Lutsenko, G. P. Yablonskii, J. P. Bergman, G. Pozina, and B. Monemar, Appl. Phys. Lett. 91, 201104 (2007).
4. Marko Sto ̈lzel Johannes Kupper, Matthias Brandt, Alexander Mu ̈ller, Gabriele Benndorf, Michael Lorenz, and Marius Grundmann, JOURNAL OF APPLIED PHYSICS 111, 063701 (2012).
5. W. Bowen, W. Wang, E. Cagin, and J. Phillips, J. Electron. Mater. 37, 749 (2008).
6. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443, 409 (2006).
7. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, SCIENCE 316,1007 (2007).
8. B. Nelsen, R. Balili, D. W. Snoke, L. Pfeiffer, and K. West, J. Appl. Phys. 105, 122414 (2009).
9. J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D. Grundy, R. Butte, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. Baldassarri Hoger von Hogersthal, E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Letts. 101,136409 (2008).
10. A. Amo, J. Lefrère, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto, R. Houdré, E. Giacobino and A. Bramati, NATURE PHYSICS 5, 805 (2009).
11. D. Hagele, S. Pfalz, and M. Oestreich, Phys. Rev. Letts. 103, 146402 (2009).
12. Hui Deng, Glenn S. Solomon, Rudolf Hey, Klaus H. Ploog, and Yoshihisa Yamamoto, Phys. Rev. Letts. 99, 126403 (2007).
13. E. del Valle, D. Sanvitto, A. Amo, F.P. Laussy, R. Andre, C. Tejedor, and L. Vina, Phys. Rev. Letts. 103, 096404 (2009).
14. L. Sapienza, A. Vasanelli, R. Colombelli, C. Ciuti, Y. Chassagneux, C. Manquest, U. Gennser, and C. Sirtori, Phys. Rev. Letts. 100, 136806 (2008).
15. A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, R. Bouchekioua, D. Sanvitto, S. Al Rizeiqi, R. Bradley, M. S. Skolnick, P. R. Eastham, R. Andre, and Le Si Dang, Phys. Rev. Letts. 101, 067404 (2008).
16. R. Cerna, D. Sarchi, T. K. Paraïso, G. Nardin, Y. Léger, M. Richard, B. Pietka, O. El Daif, F. Morier-Genoud, V. Savona, M. T., Portella-Oberli, and B. Deveaud-Plédran, Phys. Rev. B 80, 121309 (2009).
17. Raphaël Butté, Jacques Levrat, Gabriel Christmann, Eric Feltin, Jean-François Carlin, and Nicolas Grandjean, Phys. Rev. B 80, 233301 (2009).
18. Sun CK, Sun SZ, Lin KH, Zhang KYJ, Liu HL, Liu SC, and Wu JJ, Appl. Phys. Letts. 87(2), 023106 (2005).
19. M. Zamfirescu, A. Kavokin, B. Gil, G. Malpuech, and M. Kaliteevski, Phys. Rev. B 65, R161205 (2002).
20. S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, Phys. Rev. B 78, 235323 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top